![]() |
个人信息Personal Information
职称:讲师
性别:男
学科:凝聚态物理
学位:博士
所在单位:数理学院
电子邮箱:
First-principles calculations of the magnetic and electronic structures of MnP under pressure
点击次数:
DOI码:10.1088/1361-648X/aa7023
发表刊物:Journal of Physics: Condensed Matter
摘要:Manganese monophosphide (MnP) shows complicated magnetic states varying with both temperature and pressure. We calculate the magnetic and electronic structures of MnP at different pressures using first-principles methods and obtain spiral ground states whose propagation vector changes from the c-axis at low pressure to the b-axis at high pressure. In between, we find a ferromagnetic state, as observed in the experimental phase diagram. The propagation vector of the spiral states is found to vary nonmonotonically with pressure, consistent with neutron measurements. Our results indicate that the complicated magnetic phase diagram originates from a delicate competition between neighboring exchange interactions between the Mn-ions. At all pressures, the electronic structures indicate the existence of quasi-one-dimensional charge carriers, which appear in the ferromagnetic state and become gapped in the spiral state, and anisotropic three-dimensional charge carriers. We argue that this two-fluid behavior originates from the special crystal structure of MnP and may be relevant for understanding the pairing mechanism of the superconductivity at the border of the high pressure spiral phase.
论文类型:期刊论文
是否译文:否
发表时间:2017-01-01
发布期刊链接:https://iopscience.iop.org/article/10.1088/1361-648X/aa7023/meta