SESF-Fuse: an unsupervised deep model for multi-focus image fusion
Hits:
DOI number:10.1007/s00521-020-05358-9
Journal:Neural Computing and Applications
Abstract:Muti-focus image fusion is the extraction of focused regions from different images to create one all-in-focus fused image. The key point is that only objects within the depth-of-field have a sharp appearance in the photograph, while other objects are likely to be blurred. We propose an unsupervised deep learning model for multi-focus image fusion. We train an encoder–decoder network in an unsupervised manner to acquire deep features of input images. Then, we utilize spatial frequency, a gradient-based method to measure sharp variation from these deep features, to reflect activity levels. We apply some consistency verification methods to adjust the decision map and draw out the fused result. Our method analyzes sharp appearances in deep features instead of original images, which can be seen as another success story of unsupervised learning in image processing. Experimental results demonstrate that the proposed method achieves state-of-the-art fusion performance compared to 16 fusion methods in objective and subjective assessments, especially in gradient-based fusion metrics.
Co-author:Yu Zhu,Xiang Yin,Xiaojuan Ban,Haiyou Huang,Michele Mukeshimana
First Author:Boyuan Ma
Indexed by:Journal paper
Discipline:Engineering
Document Type:J
Volume:33
Issue:1
Page Number:5793-5804. (谷歌学术被引190余次)
Translation or Not:no
Date of Publication:2021-01-01
Included Journals:SCI
-
|
ZipCode:9afbadb1bdcd21f2605641205359fae42a33050a01aa43854cbd3c2c2fba7e51e00e98dd4ebb298a9e075bea70de2dc35b240e3c4868702506040a6d18b342786082da32963b6185d3a8a00d9746a41e2dea73822dae12c86efb51012eb15fb38a03b0c3dd242fbea002f942170f137c7639f1a296486404caf634982f5aab08
PostalAddress:73941b85a48ff0bf4c22e5699874367d8b3786bd0242d1955eb29c74dd5f84ce7bf3e296bb25725e9e35fe490f9d6e9838adf246c1214740869a6f13c891e46a6efc1d63db8964d21c6b27285809b804d9af9abf250775985bfa2ef027b0b51a1195148ed4da9b381910c290446fc482d5830d594b9c1759ab60eba74ce04413
Email:7a0d2b957c40b9e2da0a01b15583d983a26031fa23f266a6def5772ce24922830e13c337f928d3b9f441e3cd7f43b39869da167205118ff405bb767cf06524dca6ce03cda1034eaff073d2f37ab3cfbb3b7e46ee05f4b82f779ec434c2854fe4f4e46d111aa9b1e23b0f422e98fcf83422a59929317e2a497fb8ef8dbb37ac33
|