Deep Learning based Automatic Inpainting for Material Microscopic Images
Hits:
DOI number:10.1111/jmi.12960
Journal:Journal of Microscopy
Abstract:The microscopic image is important data for recording the microstructure information of materials. Researchers usually use image-processing algorithms to extract material features from that and then characterize the material microstructure. However, the microscopic images obtained by a microscope often have random damaged regions, which will cause the loss of information and thus inevitably influence the accuracy of microstructural characterization, even leading to a wrong result. To handle this problem, we provide a deep learning-based fully automatic method for detecting and inpainting damaged regions in material microscopic images, which can automatically inpaint damaged regions with different positions and shapes, as well as we also use a data augmentation method to improve the performance of inpainting model. We evaluate our method on Al–La alloy microscopic images, which indicates that our method can achieve promising performance on inpainted and material microstructure characterization results compared to other image inpainting software for both accuracy and time consumption.
Co-author:Bin Ma,Mingfei Gao,Zixuan Wang,Xiaojuan Ban,Haiyou Huang,Weiheng Wu
First Author:Boyuan Ma
Indexed by:Journal paper
Discipline:Engineering
Document Type:J
Volume:281
Issue:3
Page Number:177-189
Translation or Not:no
Date of Publication:2020-01-01
Included Journals:SCI
-
|
ZipCode:9afbadb1bdcd21f2605641205359fae42a33050a01aa43854cbd3c2c2fba7e51e00e98dd4ebb298a9e075bea70de2dc35b240e3c4868702506040a6d18b342786082da32963b6185d3a8a00d9746a41e2dea73822dae12c86efb51012eb15fb38a03b0c3dd242fbea002f942170f137c7639f1a296486404caf634982f5aab08
PostalAddress:73941b85a48ff0bf4c22e5699874367d8b3786bd0242d1955eb29c74dd5f84ce7bf3e296bb25725e9e35fe490f9d6e9838adf246c1214740869a6f13c891e46a6efc1d63db8964d21c6b27285809b804d9af9abf250775985bfa2ef027b0b51a1195148ed4da9b381910c290446fc482d5830d594b9c1759ab60eba74ce04413
Email:7a0d2b957c40b9e2da0a01b15583d983a26031fa23f266a6def5772ce24922830e13c337f928d3b9f441e3cd7f43b39869da167205118ff405bb767cf06524dca6ce03cda1034eaff073d2f37ab3cfbb3b7e46ee05f4b82f779ec434c2854fe4f4e46d111aa9b1e23b0f422e98fcf83422a59929317e2a497fb8ef8dbb37ac33
|