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MATERIALS SCIENCE

Wireless graphene-based thermal patch
for obtaining temperature distribution

and performing thermography

Minpyo Kang't, Hyerin Jeong?t, Sung-Won Park?, Juyeong Hong', Hyeyeon Lee’,

Youngcheol Chae'*, Sunggu Yang?*, Jong-Hyun Ahn'#

Thermal imaging provides information regarding the general condition of the human body and facilitates the
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diagnosis of various diseases. Heat therapy or thermotherapy can help in the treatment of injuries to the skin
tissue. Here, we report a wearable thermal patch with dual functions of continuous skin temperature sensing and
thermotherapy for effective self-care treatment. This system consists of a graphene-based capacitive sensor, a
graphene thermal pad, and a flexible readout board with a wireless communication module. The wearable sensor
continuously monitors the temperature variation over a large area of the skin (3 x 3cm?) with high resolution and
sensitivity and performs thermotherapy via the graphene-based heater mounted at the bottom of the device.
Animal studies prove that the proposed system can be used to diagnose various diseases. This technology could
be useful in the development of convenient and wearable health care devices.

INTRODUCTION

The human body temperature, which is the result of physical activ-
ity and metabolism, is an important parameter for the noninvasive
prediction of various diseases and physical conditions (1, 2). Tem-
perature distribution of human skin, which aids in the diagnosis
and treatment of various medical conditions, can be obtained by
thermal imaging using an infrared (IR) camera. However, this ther-
mography technique requires bulky equipment, which limits con-
tinuous monitoring and precise measurement at high resolutions.
In addition, IR imaging is indirect and dependent on the thermal
radiation of human skin (3). Therefore, detection error may occur
depending on the condition of the atmosphere or the skin. Com-
mercial IR cameras offer a lack of accuracy with 2°C or 2% discrep-
ancy. An alternative method is therefore required for an accurate
measurement. To overcome these problems, thermography can be
performed using wearable electronic devices, which are portable
and highly accurate, with real-time monitoring for long periods
(4-7). This idea opens unexplored avenues for the advancement of
existing thermographic technology.

Several researchers have developed wearable temperature sen-
sors. In most of these studies, the temperature was obtained at a
single point (8-12). For example, Han et al. (8) developed a wear-
able temperature sensor that offered the single-pixel temperature
measurement from the attached skin. Several sensors attached to
target body parts and facilitated real-time monitoring of tempera-
ture changes in the body parts. However, these sensors cannot detect
skin diseases that require the measurement of temperature gradient
over a large area, such as skin bruises and tumors. To detect these
complications, the local temperature changes in a desired skin area
must be clearly analyzed through high-resolution temperature
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mapping. The wearable temperature sensors developed for this pur-
pose require both high resolution and high sensitivity (13-17).

In addition to temperature monitoring, thermotherapy is an im-
portant function for wearable health care devices (18, 19). Thermo-
therapy uses heat to reduce muscle pain and reproduce injured tissues
(20). The increase in the skin temperature enhances blood flow due
to vasodilation, which coincides with increased metabolic rate and
tissue extensibility, thereby accelerating the process of tissue healing
(21, 22). A thermotherapeutic heater in combination with a thermal
sensor array can be used as an alternative to chemical or plugged-in
heating pads. However, the clinical benefits have not been confirmed.

In this study, we present a multifunctional, wearable thermal
patch composed of a capacitive temperature sensor array (8 by 8) that
uses chemical vapor deposition (CVD)-grown graphene (23-25)
for the top and bottom electrodes, as well as a graphene-based heater
for thermotherapy, which is installed under the temperature sensor
array. The wearable device is integrated with a wireless system and
rechargeable battery. The device exhibits targeted, stable perfor-
mances for temperature monitoring and thermal therapy on a large
specific skin area.

RESULTS

Figure 1A shows the schematic image of the wearable thermal patch
and its functions. The device consisted of an array of temperature
sensors and a heater that are integrated on a medical patch (thick-
ness, 20 um). Furthermore, it consisted of readout circuits for pro-
cessing and transmitting the measured data to an external device,
such as a smartphone. The temperature map measured on the large
skin area (~3 cm by 3 cm) was transferred wirelessly to a smart-
phone, and the user could precisely control the temperature of
the thermotherapy heater with the smartphone. The wearable sys-
tem has three functions as follows: First of all, a temperature sensor
array was used to monitor the temperature distribution and thermal
gradient, facilitating the diagnosis of the type and progression of the
disease. In addition, a monitoring system was attached to the body,
and the body temperature was measured over a long period of time.
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Fig. 1. Biomedical patch for temperature monitoring and heating. (A) Functional illustration of the temperature monitoring system. (B) Photograph of 8 by 8 array
capacitive sensor system. Scale bar, 1 cm. (C) Cross-sectional view of the capacitive sensor structure. [encapsulation: SU-8, 2 um; top and bottom electrodes: two-layer
graphene; dielectric layer: SU-8/Al,05 composite 1.5 um; substrate: SU-8 3 um; and ground (GND): three-layer graphene]. (D) Enlarged image of the capacitive sensor. The red
box indicates the region where the top and bottom electrodes intersect. Scale bar, 500 um. (E) Optical image and functional explanation of flexible board. Scale bar, 5 mm.
Mux, Multiplexer; deMux, Demultiplexer; GPIO, General Purpose Input/Output; Int. ANT, Internal Antenna. (F) Block-diagram for wireless measurement and heating system.
The two states are operated alternately to accurately measure capacitance. Cs and Ciyr indicate capacitance of sensor and internal capacitance in microprocessor, respectively.

The state of the human body could be determined by analyzing the
changes in the body temperature that occurred during physical ac-
tivities, such as exercise and sleep. Furthermore, sleep disorders
could be diagnosed by measuring body temperature, which is asso-
ciated with the sleep stages. Moreover, the system can perform ther-
mography (heat treatment) using a heater located under the sensor
array. This system can be used for various medical applications
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through the use of heat treatment that accelerates wound healing,
such as skin diseases.

The overall system consists of three parts: a capacitive tempera-
ture sensor, a heater, and a flexible printed circuit board (FPCB)
(Fig. 1B). The capacitive temperature sensor of the 8 by 8 array with
the pixel space of 2.4 mm was fabricated using four-layer CVD-
grown graphene and a composite of SU-8 epoxy and Al,O; particles
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for the electrodes and dielectric layer, respectively (Fig. 1C and fig.
S1). Graphene offers excellent mechanical flexibility, high optical
transmittance, and good biocompatibility, which are required for
wearable applications. The SU-8/A1,03 composite (used for the di-
electric) was used to complement the undesirable properties of each
material: the low dielectric constant of SU-8 and poor mechanical
properties of ALL,Os. Three composites with 5, 10, and 15 weight %
(wt %) AL,O3 particles mixed with SU-8 epoxy were compared.
The capacitance increased as the concentration of Al,O; increased,
improving the aggregation of the particles (fig. S2). The Al,O;
(10%)/SU-8 (90%) composite was an optimal mixture for obtain-
ing a uniform surface and desired capacitance. A sensor was formed
at the intersection of the top and bottom electrodes (Fig. 1D).
The horseshoe-shaped electrode protected the device from the
mechanical stretching that occurred when the device was mounted

on the convoluted skin. The sensor capacitance can be affected
by sweat and weak electrical conductivity of the skin. To reduce this
error, we integrated the two-layer graphene under the substrate
of the temperature sensor, which still supports the temperature-
sensing capability. In addition, the graphene under the substrate
could function as a heater for therapy with static bias current. The
total thickness and optical transmittance of this device, including
the medical patch used as the substrate, are ~30 um and ~80%, re-
spectively. The thinner device facilitates good mechanical flexibility
and conformable contact with the skin, enabling the precise mea-
surement of the temperature distribution of the skin (fig. S3). In
addition, the high optical transparency of the device (~80%) allows
direct observation of the attached skin area with the naked eye.
Table S1 summarizes the advantages of this device compared to
the previously reported wearable thermal sensors.
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Fig. 2. Functional demonstrations of capacitive temperature sensor patch. (A) Capacitance change over temperature variation in three steps (30.0°, 30.3°, and
30.6°C). (B) Capacitance change over five cycles at 0.3°C. (C) Relative capacitance change with varying temperature (inset: high-resolution measurement in the range from
30° to 40°C). (D) Temperature comparison between a commercial sensor and the capacitive sensor. (E) Capacitance change using the ground shielding layer for the elim-
ination of noise due to contact with skin. (F) Capacitance change using the ground shielding layer. The solution implies sweat on skin. (G) Temperature profiles of
graphene-based heaters at an input voltage of 5 V. (H) IR image captured during the graphene-based heater operation. Scale bar, 1 cm.
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The wearable device is connected to a miniaturized FPCB (29
mm by 29 mm), including a readout front end, an analog-to-digital
converter (ADC), a microcontroller, an Xtal XO, Bluetooth low en-
ergy (BLE), a DC/DC converter, and a battery (Fig. 1E and fig. S4).
The readout front end detects the temperature-dependent charge
on the sensing capacitor Cs, measured in two phases: ®@; and @, as
shown in Fig. 1F. The sampled charge on the Cs is transferred to the
integration capacitor Ciyr, and then the resulting output Vg is con-
verted to digital values via the following ADC. The 8 by 8 channel
sensor is configured as a mutual capacitor configuration (fig. S5). A
common transmit (TX) driver, which consists of a voltage buffer and a
1-to-8 multiplexer and is synchronized to the readout phase, delivers
the sequential pulse of Vpp (1.9 V). The sensor output is connected to the
readout Integrated Circuit (IC) via an 8-to-1 multiplexer. The switched-
capacitor charge integrator on the front end converts the input charge
into the voltage signal, and the integrated voltage is digitized by the
ADC. By optimizing the Resistance/Capacitance (R/C) parameters
in the readout path, the readout enables a conversion time of less than
0.1 s, which is much shorter than the sensor’s response time. Owing to
the short measurement cycle, the response time to read the capaci-
tance in the system is also short. Last, the measured data from the
sensor array are transmitted to a smartphone via the BLE connection.

The graphene-based sensor exhibited a constant and stable ca-
pacitance variation from 8.855 to 8.878 pF, as the temperature
slightly increased from 30.0° to 30.6°C after the initial calibration
(Fig. 2A). During the cycling test, the sensor showed a periodic ca-
pacitance change with a fast response time of <0.3 s at a high reso-
lution of 0.3°C (Fig. 2B and fig. S6). In particular, the sensor showed
a good linear response with a sensitivity of 40.4 fF/°C in the range of
human body temperature (Fig. 2C). Another tendency to change
over 40°C may be induced by the thermal expansion of the polymer
substrate. As a result, the change in capacitance correlated well with
the change in temperature, allowing for data conversion between

the two parameters. The data obtained with a graphene-based tem-
perature sensor were compared with that obtained using a commercial
medical thermometer (TM-917, Lutron), which can a distinguish
temperature change of ~0.01°C. The two data plots showed that the
results of the developed sensor are consistent with those of the com-
mercial sensor (Fig. 2D).

Since the capacitive temperature sensor is mounted directly on
the skin, it is necessary to isolate it from the noise associated with
the skin. The graphene substrate as a ground shielding layer, which
was installed at the bottom of the capacitive sensor, effectively re-
duced the coupling noise (Fig. 2E). Without the ground shielding
layer, a slightly conductive skin touching the sensor induced a sub-
stantial change in the capacitance. In contrast, the sensor with the
ground shielding layer exhibited slight variation. The ground layer
reduced the baseline because it could effectively absorb the fringe
electric field effectively. The sweat produced by the skin could also
act as a noise source. The ground shielding layer effectively inhibit-
ed the noise caused by the sweat. When the liquid electrolyte fell to
the sensor, an ~2% increase in capacitance was observed (Fig. 2F).
In addition to the shielding layer, the graphene layer acted as a heat-
er for thermotherapy and sensor calibration. The heater presents a
power efficiency of 0.11 W cm 2, enabling the operation for about
5 hours using a lithium battery with a capacity of 500 mAh. The
graphene heater rapidly increased the temperature to 40°C for 20s,
and then the sensor was calibrated. As a result, the thermal sensor
array achieved a two-point calibration, the errors of which were zeroed
at low and high temperatures of the target range. This two-point
calibration improved the accuracy of the temperature measurements
from the graphene-based thermal sensor (fig. S7).

To confirm the temperature mapping capability of the sensor
array, the (2,2) and (6,7) pixels of the sensor array were locally heat-
ed by 2°C using the point heater (Fig. 3A). The sensor immediately
reached the maximum temperature after heating up for 2.1 s and
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Fig. 3. Performance of temperature sensor array. (A) Device configuration for wireless measurement. The heating points start from (2,2) and move to (6,7). Scale bar,
0.5 cm. (B) Raw measurement result from the capacitive sensor. (C) Capacitance mapping data on the smartphone. (D) IR images corresponding to each stage of

evaluation.
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cooled to the base temperature in 12 s under air conditions (Fig. 3B).
The sensor clearly showed hotspots, which were similar to the re-
sults of the IR image (Fig. 3C). The device exhibited a spatial reso-
lution of ~2.4 mm according to the design of the sensor array, which
can be further improved through the design optimization of sensors
(fig. S1). To verify the practical application of the thermal patch, we
monitored the change in the skin temperature during various phys-
ical activities, such as sleep and exercise. Vigorous exercise increas-
es the skin temperature because a large amount of energy produced
by the muscles is converted into heat. In response, sweat is released
as a reaction of the nervous system to control the body temperature.
The graphene-based temperature sensor attached to the arm moni-
tored the change in the skin temperature during cycling. The mea-
sured thermal gradient was transmitted to the smartphone in real
time, and the user could conveniently check the data (Fig. 4A and
movie S1). In the ready state, the skin temperature was ~30.1°C (the
skin temperature near the arm was generally 2° to 10°C lower than
the core body temperature), which then increased to 31.4°C as the
body movement increased. After the exercise was stopped, the body
temperature was retained at the elevated temperature for a certain
period of time and gradually returned to its original value under the
influence of external temperature and humidity. Eight minutes af-
ter the exercise, the body temperature dropped to 30.7°C, and after

35 min, it returned to the initial skin temperature of 30.1°C when
the room temperature was 22°C (Fig. 4B). These results are consist-
ent with those from the IR image (Fig. 4C). Moreover, we observed
the changes in the skin temperature during sleep. When in a deep
sleep, the body temperature reduced as the brain activity decreased.
The observation of the body temperature during sleep is significant
in detecting sleep disorders. Sleep disorders, such as insomnia, are
associated with a decrease in the ability to regulate the body tempera-
ture, and the pattern of the sleep disorders can be identified through
the changes in the body temperature during sleep (26). Therefore,
the body temperature using the graphene-based sensor placed
in the neck area was monitored in real time during sleep (room tem-
perature, 22°C), which showed the temperature closest to the core
body temperature (Fig. 4E and fig. S8). The body temperature
during an 8-hour sleep period decreased by ~1.7°C in deep sleep
(Fig. 4, F and G). The temperature drop of 1.7°C was associated
with a decrease of —0.7% in the capacitance value. The device exhib-
ited stable operation in these long-term experiments without any
serious device error and aided in monitoring the changes in tem-
perature during physical activities and/or sleep disorders.

In addition to monitoring the real-time body temperature during
physical activities, this sensor is intended to diagnose diseases and
perform heat treatments on the attached area. In the human body,
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Fig. 4. Practical applications of skin-mounted temperature sensor. (A) Device configuration and optical image for wireless measurement. The red box shows the
enlarged image of the attached sensor. Scale bars, 2 cm. (B) Real-time monitoring using the wireless temperature sensor during exercise. Exercise is divided into three
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the changes in body temperature are expressed according to the
supply of blood, and the expression patterns differ according to the
type of disease. In existing thermography studies, research on vari-
ous diseases is generally conducted on the basis of the temperature
distribution obtained from the IR images. In general, when an in-
flammatory reaction or a wound on the skin occurs, the blood flow
to the affected area increases, which increases the temperature of
the affected area. In the case of a skin tumor, the temperature differ-
ence was reported to be greater than 1°C, depending on the type of
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To noninvasively diagnose diseases, we developed a rat necrosis
model (Fig. 5A). The left renal artery was clamped to induce renal
infarction, and the surgical incision was sutured (Fig. 5B). All
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measurements (or data) were remotely obtained using the FPCB
connected to the sensor and transmitted directly to the smartphone
(Fig. 5C). Rats in three states (control, sham, and necrosis groups;
five animals per group) were compared using the temperature map-
ping results and IR images (Fig. 5, D and E). The temperature of the
target area in the sham group rarely changed through the IR images
and capacitance mapping. In contrast, 3 days after the necrosis
operation, the sensor attached to the surgical site had a temperature
0.7°C lower than that of the surrounding area, as the blood supply
to the area decreased (fig. S9). Thus, the temperature sensor can be
used to diagnose various diseases, such as renal, heart, brain, and
kidney infarctions.

In addition, we conducted an experiment to confirm the thermal
therapeutic function of the wearable thermal patch using a rat with
a skin wound on the back. Thermotherapy is considered effective in
the postacute phase of the skin wound healing. Heat raises the tissue
temperature, which causes vasodilation and/or rapid blood pres-
sure, increasing the supply of oxygen and nutrients for healing, and
reducing carbon dioxide and metabolic waste in the heated skin
area. The graphene heater mounted below the thermal sensor array
can increase the temperature up to 3°C with a resolution of
approximately 0.2°C for an effective thermal therapy (Fig. 5F). To
maintain the optimum temperature, the heater temperature was
maintained at 32°C to accelerate the wound healing at the surgical
site. The thermotherapeutic effect of the heater for the effective skin
regeneration rate was confirmed with three cases—control group
(without patch at all), W/O GH group (with patch that is not heated),
and GH group (with a graphene heater patched) (fig. S10). As shown
in Fig. 5 (G and H), the healing of the wound area was faster in the
graphene heater group than in the sham group. Comparing the aver-
age wound area of each group over time, it was confirmed that the
wounded skin covered with the graphene heater cured approxi-
mately 30% smaller than that without a heater on the eighth day of
treatment (Fig. 51 and fig. S11). After 14 days, the wound was prac-
tically healed with the graphene heater. In contrast, in the case of the
rat without a heater, the wound remained up to 14 days. Beyond
wound healing, thermotherapy could be widely used in the treatment
of various skin diseases, such as skin troubles and skin cancers.

DISCUSSION

In this study, we developed a wearable thermal patch that consists of
a capacitive temperature sensor array for temperature mapping and
a therapeutic heating system for thermotherapy. This sensor array
can continuously monitor temperature during physical activities and
help to identify health issues by obtaining the temperature distribu-
tion profile of a target area. In addition, a graphene heater mounted
under the temperature sensor could increase the healing rate of the
injured skin, presumably through vasodilation. These functions have
been successfully demonstrated through the monitoring of human
and animal experiments. This wearable thermal patch can be useful
in bio-healthcare systems with structures and functionalities that
cannot be achieved using conventional devices and techniques.

MATERIALS AND METHODS

Fabrication of graphene-based capacitive sensor array
Graphene was grown using CVD on a Cu foil. Subsequently, Cu was
etched in ammonium 250 persulfate (20 g dissolved in 1000 ml of

Kang et al., Sci. Adv. 8, eabm6693 (2022) 13 April 2022

deionized water) after coating with poly(methyl methacrylate) as
a supporting layer. The fabrication process of the device began by
spin-coating a thin film of SU-8 (~3 um) on a sacrificial layer of Cu
foil (fig. S12). The metal interconnects (Cr/Au, 3 nm/35 nm) were
defined using lift-off method. Two-layer graphene was transferred
and patterned by photolithography for the bottom electrode. As a
dielectric layer, SU-8/AL,O3 (10 wt %) was coated (3000 rpm) and
cured (80°C). Similarly, top electrodes were defined by metal depo-
sition and graphene transfer/patterning. SU-8 layer, which was coated
(3000 rpm) and cured, was transferred on to the capacitive sensor
for encapsulation. By etching the sacrificial layer, the whole sensor
was transferred on a medical patch (20 um; Tedagram), which al-
ready has a three-layer graphene for ground layer. Then, the sensor/
heater was bonded to a flexible cable for connection with the FPCB.

Evaluation of animal models

The studies were conducted on 7-week-old male Sprague-Dawley
rats for the necrosis model and simple skin wound model. The rats
were housed with a 12-hour light-dark cycle, and food and water
were provided ad libitum. All protocols were approved by the Institu-
tional Animal Care and Use Committee of Incheon National Univer-
sity, and all experiments were performed according to the relevant
guidelines and regulations.

Experimental renal infarction

All animal experiments were verified through a population of five
animals. Each group showed relatively consistent data trends. We
compared three different groups in this measurement: control
group (without any surgery), sham group (laparotomy except in-
farction), and infraction group (with surgery for infarction). Before
the induction of renal infarction, the rats were anesthetized by inha-
lation of isoflurane vaporized at concentrations of up to 5% in the
induction phase and 2% during the surgical procedures. Isoflurane
was vaporized in a ratio of 2:1 N, and O, mixture. Next, the rat’s
hair in the surgical area was shaved and disinfected with povidone
iodine. In the supine position, a small incision on the left side of the
abdomen was made using surgical scissors. The kidney was briefly
externalized, and the left renal artery was identified. For clipping, a
nylon suture was placed under the left renal artery for vessel iso-
lation, and the isolated renal artery was blocked for 30 min using
a microvascular clamp (S&T AG, Neuhausen, Switzerland). After
clamping, the microvascular clamp was removed, and reperfusion
was performed for 5 min. After the reperfusion period, the muscle
layer and abdominal skin incision were sutured. No surgical proce-
dures were included in the sham group (control group). The sham
group underwent most of the surgical procedures but did not un-
dergo renal infarction.

Wound creation

All animal experiments were verified through a population of five
animals. We compared three groups in this experiment: control
group (without patch at all), W/O GH group (with patch that is not
heated), and GH group (with a graphene heater patched). The rats
were anesthetized and shaved. Full-thickness skin wound excision
of 1 x 1 cm was performed on the back of each rat and left open. In
the wound group without the graphene-based heater (W/O GH),
no treatment was used. It was covered with Tegaderm film (Trans-
parent Film Dressing Frame Style, 3M Health Care, USA) and med-
ical tape (3M Soft Cloth Tape with Liner, 3M Health Care, Korea).
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It was changed every 12 hours, twice a day. The Tegaderm film was
fixed with medical tape and applied under anesthesia. In contrast, in
the wound group with the graphene-based heater (GH), the graphene-
based heater was used for thermal treatment. The device was fixed
to the shaved dorsal skin surface of the rat. The battery of the
graphene-based heater was changed every time the Tegaderm film and
medical tape were changed. All the wound areas were photographed
and measured on days 0, 2, 4, 6, 8, 10, 12, and 14 after wounding.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm6693
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