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Developing materials with ultrahigh thermal conductivity is crucial for thermal management and
energy conversion. The recent development of generative models and machine learning (ML) holds
great promise for predicting new functional materials. However, these data-driven methods are not
tailored to identifying energetically stable structures andaccurately predicting their thermal properties,
as they lack physical constraints and information about the complexity of atomic many-body
interactions. Here, we show how combining deep generative models of crystal structures with
quantum-accurate, fast ML interatomic potentials can accelerate the prediction of materials with
ultrahigh lattice thermal conductivity while ensuring energy optimality.We exploit structural symmetry
and similarity metrics derived from atomic coordination environments to enable fast exploration of the
structural space produced by the generative model. Additionally, we propose an active-learning-
based protocol for the on-the-fly training of ML potentials to achieve high-fidelity predictions of
stability and lattice thermal conductivity in prospective materials. Applying this method to carbon
materials, we screen 100,000 candidates and identify 34 carbon polymorphs, approximately a quarter
of which had not been previously predicted, to have lattice thermal conductivity above 800Wm−1 K−1,
reaching up to 2,400Wm−1 K−1 aside from diamond. These findings provide a viable pathway toward
the ML-assisted prediction of periodic materials with exceptional thermal properties.

Developing new materials with high lattice thermal conductivity (κL) has
long attracted academic and industrial interest due to their pivotal role in
thermal management techniques for preventing electronic devices and
batteries from overheating damage and performance degradation1–3. Over
the past decades, the discovery and design of high thermal conductivity
materials have largely relied on trial-and-error experiments (e.g., random
element substitution)4 within the guidance of empirical rules5. More
recently, this progress has been significantly accelerated with the rapid
development of computational techniques. In this endeavor, quantum-
mechanical calculations based on density functional theory (DFT)6,7 have
played a central role. For example, established traditional methods for
crystal structure prediction (CSP), such as ab initio random structure
searching (AIRSS)8, CALYPSO9, and USPEX10, generally introduce DFT
free energy calculations and explicit constraints from prior knowledge to
guide the optimization of structures with given chemical compositions. In
addition, solving the linearized phonon Boltzmann equation using DFT
calculations11,12 has enabled the accurate prediction of κL in crystalline

materials13,14. However, DFT-driven methods have largely restricted the
exploration to a narrow set of candidate materials due to high computa-
tional demands15,16. So far, only a handful of inorganic crystals have been
identified to exhibit ultrahigh κL—we here categorize them as having κL
exceeding 800Wm−1 K−1 in any direction at room temperature17,18—
including diamond19–21, cubic boron arsenide (BAs)22, cubic boron nitride
(BN)18, and θ-phase tantalum nitride (TaN)23. Arguably, several other
materials with ultrahigh κL likely remain undiscovered.

With the introduction of advancedmachine learning (ML) techniques
in materials modeling, new approaches have emerged to accelerate the
virtual screening of materials24. One such approach is the introduction of
machine-learned interatomic potentials (MLIPs), which bridge the gap
between computational cost and accuracy at the atomic scale. Extensive
work has shown thatMLIPs can achieve accuracy comparable toDFTwhile
being several orders of magnitude faster25–27. Furthermore, MLIPs have
proven tobe capable of accurately calculating lattice thermal conductivity of
both crystalline and disordered solids28–33. However, when inferring the
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structures and thermal properties of unknownmaterials, the uncertainty of
MLIP models can be high, as their quality depends on the training dataset.
Thus, constructing accurate andflexibleMLIPs from small datasets remains
a challenge.

Another such innovation is the development of generative models for
fast CSP. Generative models offer a much more cost-efficient alternative to
traditional methods by avoiding the high expense of DFT calculations34.
Distinct from traditional methods that often need to assume the initial
structures and elements, the principle of generative models is to learn the
joint probability distribution ofmaterials, fromwhichnew composition and
structures are sampled and reconstructed. Therefore, generative models
enable the rapid exploration of a broader range of potential materials
without being limited by predefined assumptions. Furthermore, generative
models, such as variational autoencoder (VAE)35, can map input structures
into a continuous vector space, namely latent space in the ML jargon. The
differentiable nature of the latent space facilitates the global optimization of
material properties through inverse design, typically achieved by training a
surrogate model that directly maps the latent space to the desired material
properties. Despite the promise of generative models in CSP, they face
outstanding challenges in searching for materials with thermodynamical
stability due to the lack of rigorous physical constraints36. Additionally,
while several works have achieved inverse design by mapping properties to
structures directly in the latent space or using a conditional approach (e.g.,
MatterGen)37–41, building a surrogatemodel for accuratelymapping κL from
structures remains challenging. This difficulty arises from the complex
many-body interactions involved in the structure-κL mapping and the
temperature dependence of phonon scattering.

In this work, we introduce a unified generative deep learning frame-
work for accelerating the prediction of three-dimensional crystalline
materials with ultrahigh κL and thermodynamic stability. First, we leverage
an SE(3)-equivariant generative model for the fast exploration of materials
space. On top of this, we implement an active-learning-based protocol for
training MLIPs on the fly, ensuring the effective use of a small amount of
training data to achieve robust models that allow for accurate prediction
regarding the stability and thermal properties of unseen materials. Fur-
thermore, we propose structural symmetry and similarity metrics to
enhance sampling efficiency and screening of the generated chemical space.
These components together form an automated loop that accelerates the
development of materials. Our method is validated on complex carbon
materials, which serve as an ideal test case due to their abundant structural
polymorphs and great potential as high κL materials (e.g., well-known
diamond), resulting from strong covalent bonding and light atomicmass of
carbon. We show that our method can not only reproduce experimentally
observed carbon materials with high κL but also create new, previously
unpredicted structures that have great potential for synthesis.

Results
A unified framework for exploring materials space
Theoverviewof our approach is depicted in Fig. 1,whichcanbedivided into
three parts. The first part focuses on the data-driven generation ofmaterials
with two main objectives: reconstructing the structures in the training set
and creating newly valid, diverse structures.We adopt an SE(3)-equivariant
crystal diffusion variational autoencoder (CDVAE)42 as the backbone of our
generativemodel due to its capability of regulating the stability of generated
material by incorporating the physical inductive bias—CDVAEuses a noise
conditional score network to output gradients that drive atomic coordinates
toward lower energy states. Following the framework of CDVAE, initial
structures are defined by their elemental compositions {A}, atomic coor-
dinates {x}, and lattice parameters {L}. The encoder maps the initial struc-
tures onto the learned joint probability distribution, referred to as the latent
space {Z}. In this space, new structures are synthesized through random
sampling. The decoder then handles these samples, determining their
number of atoms, lattice parameters, and atomic positions using a diffusion
process. These newly generated structures, together with the original
structures in the training dataset, constitute the ensembles used for the

prediction of ultrahigh κL materials. While CDVAE implements the phy-
sical stability biases, it remains an approximation and does not strictly
adhere to quantum-mechanical theory or calculations. Therefore, this
method is not able to guarantee that all generated materials will be ther-
modynamically stable in a broader chemical space. To address this issue, we
introduce data distillation as the second part of our approach. First, we
leverage the computational efficiency andaccuracyofMLIPs tooptimize the
structures of all generatedmaterials, ensuring that they are locally stable. To
this end, pre-trained models, such as emerging foundation models or
general-purposemodels for specific elements, can be usedout of the box as a
starting point due to their robustness across a wide range of structures43,44.
After optimization, all duplicate structures are removed through structural
similarity analysis, leaving only one instance of each. Inspired by empirical
rules suggesting that simple unit cells with high symmetry often result in
high thermal conductivity45, we here conducting an initial screening of
materials using a structural symmetry metric that is defined based on the
number of atoms (N) and symmetry operations (SO) in the unit cell. The
selection criterion is that materials with a unit cell ofN ≤ 12 and SO ≥ 4 will
be retained for the next round of screening, while other structures will be
removed.

The final part involves a multistep identification and validation of
ultrahigh κL materials. Although the symmetry constraints used in the
second part can help reduce the search space of material phases, the
remaining exploration space is still vast. To further narrow down this
exploration space, we propose a two-step samplingmethod. First, we use
the farthest points sampling (FPS) algorithm46 to selectm structures with
the greatest diversity as benchmarks (Methods). We then apply a
computational protocol for the accurate evaluation of lattice thermal
conductivity (ETC) on these benchmarks to identify potential ultrahigh
κLmaterials. Second, we clustermdistinctmaterial groups based on their
structural similarities with benchmarks using the k-nearest neighbors
(KNN) algorithm (Methods). Groups containing benchmarks with
κL ≥ 800Wm−1 K−1 are identified as potential ultrahigh κL candidates,
and all materials within these groups will be screened through the same
ETC protocol to identify other materials with ultrahigh κL. During the
ETC process, the MLIP model will be improved on the fly using a well-
established active learning strategy known as “Query by Committee”
(QBC)47,48 before making the final κL prediction (Methods). This
approach selectively expands the dataset when the uncertainty of the
MLIP model surpasses a certain threshold, greatly reduces the cost of
curating training data while preserving high-fidelity predictions, and
proves to be effective in various physical and chemical applications49–51.
Finally, the identification of collective ultrahigh κL materials is validated
through quantum-mechanical calculations or experimental methods.

Material generation performance
We nowmove to showcase the performance of our method in the practical
application to carbon materials. Carbon is known as one of the most
challenging and intriguing targets for crystal structure prediction because its
tendency to undergo sp, sp2, and sp3 hybridization leads to structural com-
plexity and diversity52. Recently, a dataset of carbon periodic structures,
including 101,529 allotropes whose unit cells have 6–24 atoms, was gen-
erated with AIRSS at 10 GPa by Pickard53. All structures in this set reside at
local energyminima, but no κL was provided for any of them.Here, we train
the CDVAE model using the lowest-energy 10% of the original dataset,
employing a random split of 60% for training, 20% for validation, and 20%
for testing, consistent with the approach used in the original literature42 and
subsequently generated 100,000 initial structures at a speed of 0.48 seconds
per structure on a single RTX 2080 Ti GPU, several orders of magnitude
faster than the DFT-guided methods. To reveal how close the generated
structures are to their low-energy states, they are all thoroughly optimized
using a pre-trained equivariant message passing neural network potential
(Methods), namely Allegro27, chosen for its high computational efficiency
and accuracy. The performance of the CDVAE model is quantified by
analysing the structural changes before and after optimization.
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Figure 2a-c shows the distribution of relative deviations in lattice
lengths, lattice angles, and atomic fractional coordinates between the
generated and optimized structures, respectively. As indicated in Fig. 2d,
a great number of the generated structures undergo evident changes after
optimization, such as lattice twisting or tensile and compressive defor-
mations. More specifically, the maximum relative deviation in lattice
lengths can exceed 20%, with approximately half of them showing a
relative error over 10%, while lattice angles exhibit a relative average
deviation of around 5.6%. Such deviations arise from the lack of rigorous
physical constraints in the CDVAEmodel. In terms of material property
prediction, lattice strain has a large impact on the elastic moduli and
acoustic group velocities, which in turn significantly influence κL. For
instance, a uniaxial strain of +1% in diamond can result in an approx-
imate −12% decrease in κL

54. In this context, accurately predicting the
equilibrium geometry and lattice parameters becomes particularly
important, underscoring the necessity of using eitherDFT or an accurate
MLIP model to optimize the generated structures. Interestingly, we
observe higher symmetry in the optimized structures than in the gen-
erated ones.

Figure 2e further explores the uniqueness and novelty of generated
structures after optimization. Uniqueness reflects the diversity of the gen-
erated structures, while novelty indicates that these structures are not pre-
sent in the training dataset (refer tometrics for determining uniqueness and
novelty in “Methods” section)37,42.As thenumberof the generated structures
increases, the total number of unique and novel materials also grows,
although their proportiondecreases and approaches saturation. Specifically,
a total of 7213 structures are found to be unique, accounting for approxi-
mately 7.2% of the total generated structures. We then refine the dataset
using the established structural symmetrymetric, reducing the pool to 1361
candidate structures, from which ultrahigh κL materials will be identified.

Exploration of ultrahigh thermal conductivity materials
TheML-driven exploration of ultrahigh κLmaterials, as outlined in Fig. 1, is
conducted on the 1361 candidates. The visualization of the entire candidate
set is illustrated in Fig. 3a mapped by Smooth Overlap of Atomic Positions
(SOAP) descriptors55. It highlights some well-known carbon allotropes,
such as diamond, graphite, and Bct-C1256, which have been reproduced
through the generative process. We first use the FPS algorithm to select the

Fig. 1 | The overview of our approach. Starting with the initial crystalline structures
(gray), an SE(3)-equivariant generative model, namely CDVAE, is trained to pro-
duce synthetic structures. The synthetic structures then undergo optimization with
pre-trained MLIP models (pink). Complex unit cells with low symmetry are filtered
out based on the empirical rule, leaving a refined dataset of candidate materials.
Subsequently, we select the most diverse m structures using FPS algorithm as
benchmarks (blue) and assess their κL via an ETC protocol (dashed box). Next, we

cluster the candidate materials into m groups based on their structural similarity
with benchmarks. All materials in those groups containing benchmarks with
κL ≥ 800Wm−1 K−1 are further screened with the same ETC protocol. During the
ETC process, MLIP models will be improved on the fly using an active learning
strategy, ensuring high-fidelity κL predictions. Finally, the identified potential
materials with ultrahigh κL are validated by either DFT calculations or experimental
measurements.
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50most diverse structures as benchmarks, as indicated by the green squares
in Fig. 3a. In addition, five reported ultrahigh κLmaterials (listed in Table 1)
are includedas benchmarks to further enhance the searchprocess.Note that
by executing FPS, we identify 53 benchmarks, among which diamond and
AA T12-carbon57 are included.

The κL evaluation of the benchmarks is carried out using the high-
fidelityAllegroMLIPs that have beenevolved and trained through the active
learning protocol based on the uncertainty estimation outlined in the
Methods section. Figure 3b depicts the evolution of energy uncertainty for
each benchmark configuration. In the beginning, ten configurations exceed
the empirical uncertainty threshold of 15meV atom−1, with the highest
reaching 35.6meV atom−1. As DFT reference configurations with the
highest uncertainties are added iteratively to the training set, the overall
uncertainty decreases. By thefinal iteration, all uncertainties have converged
below 15meV atom−1, with their distribution shifting toward lower
uncertainty. Lastly, nine benchmark structures are confirmed to exhibit a κL
exceeding 800Wm−1 K−1, and these are highlighted with red borders,
among which diamond and AA T12-carbon are included.

We then use KNN classification to select 10 nearest neighbors for each
ultrahigh κL benchmark. However, to minimize the overlap among the
selected clusters, a total of 64 unique structures are ultimately chosen,
represented as purple circles in Fig. 3a. A similar ETC process based on
active learning is executed again for the KNN samples (Fig. 3c). It is noted
that only for one structure theMLIPs have an uncertainty slightly exceeding
the threshold of 15meV atom−1. Figure 3d shows the distribution of κL
values for the entire set of candidate materials identified through our
workflow. In the end, 34 structures (see supplementarymaterials) are found
to have a κL greater than 800Wm−1 K−1, among which five structures are

identified as reproduction of known benchmarks with ultrahigh κL listed in
Table 1.Over 50%of the totalKNNcandidatematerials exhibit ultrahigh κL,
suggesting that a greater structural similarity to high-κL materials increases
the likelihood of exhibiting high κL. For example, structures in the vicinity of
diamondmostly show ultrahigh κL, while those near BCO-C16

21,58 with a κL
of 462Wm−1 K−1, consistently haveκL below800Wm−1 K−1 (seeTable S2).
Therefore, screening high κLmaterials with structural similaritymetrics can
be considered as an effective approach.

DFT validation and phonon properties
To validate our findings, we select six representative carbon allotropes and
conduct DFT calculations (see Methods) to determine their respective
ground-state energy and κL (Fig. 4 and Table S3). These materials include
three diamond polytypes59,60 and three other candidates that are structurally
distinct from diamond. The three diamond polytypes consist of alternating
layers of cubic diamond and hexagonal diamond, while the other three
candidates are tubulanes with 4- and 8-membered rings based on cross-
linked carbon nanotubes61,62. The results show that the κL predicted by our
MLIP are in close agreement with those calculated by DFT, confirming the
reliability and accuracy of our method. To gain insights into the thermo-
dynamic stability of the six carbon allotropes, we calculated their positions
on the energy convex hull leveraging the active-learned Allegro potential
introduced before. It indicates that all six candidates lie within 0.5 eV
atom−1—a value below the thermodynamic upper limit of 0.933 eV atom−1,
which is used to identify metastable materials as detailed in ref. 63—or less
from the convex hull. Additionally, 21 other structures, not shown here,
have an energy-above-hull of less than 0.25 eV atom−1, and 8 are within
0.1 eV atom−1 (Fig. S2). These two thresholds, commonly referenced in the

Fig. 2 | Performance evaluation of the generative model. Violin plots illustrating
the distribution of relative deviations between the generated and optimized struc-
tures for (a) lattice lengths, b lattice angles, and (c) atomic fractional coordinates,
respectively. These deviations demonstrate that the structural changes occur during
the optimization process due to the lack of rigorous physical constraints in the
generative model. d Schematic representation of structural relaxation, showing how

optimization can lead to position shifts, lattice twists, and stretch/shrink deforma-
tions. e The generative performance of CDVAE quantified in terms of the number
and rate of unique and novel structures. As the number of generated structures
increases, the total number of unique and novel structures grows, but their pro-
portion decreases and approaches saturation.

https://doi.org/10.1038/s41524-025-01592-8 Article

npj Computational Materials |           (2025) 11:97 4

www.nature.com/npjcompumats


literature36,37,64,65, suggest that these structures have promising potential for
experimental synthesis.

Figure 5 shows the phonon dispersion curves of the six representative
carbon allotropes, comparing the results fromDFTwith those predicted by
our MLIP model. The absence of imaginary frequencies in the phonon
dispersion curves indicates the dynamical stability of these structures.
Notably, the phonon branches in these predicted materials are more com-
plex than those of diamond. This increased complexity enhances phonon-
phonon scattering, contributing to the fact that, although these materials
exhibit high lattice thermal conductivities, they are still lower than that of
diamond. Additionally, the bandwidths of the three carbon tubulanes
shown in Fig. 5d-f are significantly wider compared with those of diamond
polytypes (a to c), which results in a higher rate of phonon scattering
especiallywithin a range of 15–40 THz (Fig. S3 in supplementarymaterials).

This further explains that phonons above 15 THz in these three tubulanes
contribute negligible thermal transport, leading their κL being obviously
lower than those of diamond polytypes. Nonetheless, their κL remain
exceeding 800Wm−1 K−1.

Discussion
Generative models are becoming increasingly popular in the field of
materials prediction due to their high efficiency in exploring vast material
spaces, yet they face significant challenges in identifying local energy
minima. As shown in our analysis, nearly half of the generated structures
experience large lattice strain (over 10%) and distortion, highlighting the
necessity of further structural optimization to ensure local structural sta-
bility. Here, we propose a unified framework to improve the accuracy and
speed of identifying potential ultrahigh κL materials, by integrating deep

Fig. 3 | Machine learning-driven exploration of ultrahigh κL materials.
a Visualization of the 1361 candidate materials by t-SNE, highlighting well-known
carbon allotropes such as diamond, graphite, and Bct-C12 reproduced through the
generative process. Energy uncertainty evolution of (b) FPS- and (c) KNN-selected
benchmarks over multiple active learning iterations. d Distribution of κL values for

the entire set of selected candidate materials. e Histogram of κL values for FPS- and
KNN-selected structures. The fact that over 50% of KNN-selected materials exhibit
κL greater than 800Wm−1 K−1 underscores that structural similarity to known
ultrahigh κL materials being a strong indicator of ultrahigh κL potential.
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generativemodels with active-learnedMLIPs, ensuring the thermodynamic
stability of generated materials. The use of structural symmetry metrics
streamlines the identification of promising materials by filtering out low-
symmetry or complex structures. In addition, the introduction of structural
similarity metrics allows for a more targeted selection process, reducing the
computational load by focusing on materials that share structural char-
acteristics with known high-performance materials, thereby increasing the
likelihood of predicting ultrahigh κL candidates. This prioritizes inverse
design methods when targeting novel materials with no or little prior
property knowledge. Our method is applied to carbon materials, leading to
the prediction of 34 carbon polymorphs with ultrahigh κL (exceeding
800Wm−1 K−1 in any direction), with 33 out of 34 carbon polymorphs are
confirmed to be insulators or semiconductors (see Fig. S4). Among these,
five materials with known ultrahigh κL (such as diamond and lonsdaleite)
are reproduced, and eight materials are entirely new in both structure and

thermal properties. The remaining 21 materials have had their structures
previously reported66, but their ultrahigh κL properties had not been studied
or documented before. This demonstrates the dual capability of our
approach in validating existing materials and predicting entirely new can-
didates with ultrahigh κL. Remarkably, the identified materials displayed
lattice thermal conductivity values reaching up to 2400Wm−1 K−1, making
them the highest known thermal conductors aside from diamond.

Our proposed framework offers an efficient solution not limited to
carbon materials but fully scalable to multi-component systems. With the
continuous advancement of high-accuracy, universal MLIP foundation
models43,44,67,68, this approach holds great promise for unlocking new high-
performance materials across a broad range of applications.

Methods
Structural analysis on synthetic materials
The metrics of uniqueness and novelty are defined based on the Struc-
tureMatcher utility from the Python library pymatgen69 which can distin-
guish whether two crystals have the same structure. When synthesizing
structures using generative model, some of the them may have the same
structure.We remove all the duplicates and leave only one instance of each.
These leaving structures are defined to be unique from each other. As for
novelty, a synthesized structure is considered novel if it cannot be matched
with any structures from the training dataset of the generative model. The
StructureMatcher utility follows the default parameters: ltol = 0.2, stol = 0.3,
angle_tol = 5, which collectively give the tolerances on cell and site positions
when comparing two structures.

The determination of the primitive cell and space group are based on
the SpacegroupAnalyzer utility from pymatgen, using parameters of

Table 1 | Five reported carbon materials with ultrahigh κL

Benchmark name κL (reported) κL (this work)

Diamond 2000–3500 (Expt.)19,20 2573

Lonsdaleite 1687 (BTE)21 1785

Bct-C4 1411 (BTE)21 1672

Z-carbon 1262 (BTE)21 1412

AA T12-carbon 1049 (BTE)57 852

The entries are obtained either from experimental measurements or theoretical computation by
BTE. (Unit of κL: W m−1 K−1).

Fig. 4 | Crystal structures and thermodynamic
properties of the six predicted carbon allotropes
with ultrahigh κL. a 18-atom trigonal structure
(6 atoms in primitive cell). b 10-atom trigonal
structure. c 8-atom hexagonal structure. d 16-atom
orthorhombic carbon tubulanes (8 atoms in primi-
tive cell), having space group Cmca with a glide
plane a (the last letter inCmca) comparingwith e 16-
atom orthorhombic carbon tubulanes (8 atoms in
primitive cell), having space group Cmcm. f 8-atom
orthorhombic carbon tubulanes (4 atoms in primi-
tive cell). The top three structures (a–c) are diamond
polytypes, while the next three (d–f) represent
tubulanes with 4+ 8 membered rings.
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symprec = 0.1 and angle_tolerance = 1.0 which give the tolerances of sym-
metry coordinates and angle respectively.

Global visualization of synthetic materials
The global overview of the structural distribution is mapped by SOAP
descriptor, a high-dimensional vector that captures local structural infor-
mation around each atom in a material. It is constructed by expanding the
atomic density around each atom using a set of orthogonal basis functions,
typically spherical harmonics and radial basis functions. This results in a
rotationally and translationally invariant representation of the local atomic
environment, which is crucial for accurately describing the structural
properties of materials. We use an atomic environment cutoff radius of
5.0 Å, Gaussian expansion smoothness of 0.5 Å and spherical harmonic
functions expanded tonmax = 6, lmax = 6.While SOAP is generally employed
to distinguish the local environments of individual atoms, here we use an
averaged SOAP descriptor over all atoms in the cells70,71. These structures
descriptors are then decomposed to two-dimension for similarity analysis
and visualization by t-SNE algorithm72, where the perplexity parameter is
set to 10.

The FPS algorithm is then used to sample diverse points in this
embedding space. It works by iteratively selecting points that are farthest
from the already chosen points, ensuring that the sampled points are spread
out across the entire space. This diversity in sampling helps in exploring the
search spacemore effectively, leading to the identification of a wide range of
potential candidates with varying properties.

Pre-trained Allegro potential
The aim of the pre-trained MLIP is to model a generalized PES covering
enormous variety of structures with diverse environments of sp, sp2, and sp3.
To achieve this, its training dataset ought to include representative yet
diverse configurations of possible structures. Here we curate the dataset
designated as GAP-2020 which is a subset derived from ref. 73. It encom-
passes a variety of configuration types including RSS crystalline, normal
bulk crystalline, Samara Carbon Allotrope Database (SACADA)66 crystal,
diamond, graphite, nanotubes, fullerenes and amorphous forms. Here, we

select structures from GAP-2020 where the energy is less than −4.5 eV
atom−1 and themagnitude of force components is below 30 eVÅ−1 to form
our training dataset.The dataset consists of 5445 configurations,whichhave
been stratified based on formation energy and allocated into training,
validation, and testing sets in a default 60-20-20 ratio based on energy.

The pre-trained Allegro model has three layers and lmax = 3 with 16
features for both even and odd irreps, summing up to 232,776 parameters in
total. The 2-body latentmulti-layer perceptron (MLP) consists of 3 layers of
dimensions [128, 128, 128], using SiLU nonlinearities74. The later latent
MLPs consist of a single layer of dimensionality 128, also using SiLU
nonlinearities. The embedding weight projection was implemented as a
single matrix multiplication without a hidden layer or a nonlinearity. The
final edge energy multi-layer perceptron has 3 hidden layers of dimensions
[256, 128, 64] and again SiLU nonlinearities. The model is initialized
according to a uniformdistribution.Weuse a radial cutoff of 5.5 Å.Weuse a
basis of 8 non-trainable Bessel functions for the basic encoding with the
polynomial envelope function using p = 48. Models are trained using a
mean-square-error (MSE) loss on the energywith theAdamoptimizer75,76 in
PyTorch77, with default parameters of β1 = 0.9, β2 = 0.999, and ε = 10−8

without weight decay.
The accuracy of the pre-trained Allegro potential has a mean-average-

error (MAE) of 24.3 meV atom−1 of energy on testing set and a root-mean-
square-error (RMSE) of 273meVÅ−1 of force on testing set. The specific
prediction errors of each configuration types are detailed in Fig. S1 and
Table S1 in supplementary materials.

QbC based active learning protocol for high-fidelity MLIPs
In order to train high-fidelity MLIPs for stability determination and κL
prediction, the training datasets are built through iterative processes based
on Query by Committee technique47,48. Since small ensembles may under-
represent the hypothesis space, and the required memory and computa-
tional effort increase linearly with the number of ensemble members78, we
chose an ensemble size of 8 to balance this trade-off relation, which is also a
recommended size by Shang and Liu79. Starting with an initial dataset, a
committee of 8 MLIPs is trained on 8 respective subsets slightly different

Fig. 5 | Phonon dispersion curves for six representative carbon allotropes,
comparing the results fromDFT (black lines) andour “Allegro”MLIP (red lines).
a–cThree diamond polytypes with highest κL.d–fOther three representative carbon

tubulanes with high κL. The close alignment between the DFT- andMLIP-predicted
curves indicates the accuracy of our model in reproducing the phonon dispersion
properties of these materials.
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from each other, while in each case a small fraction of data is intentionally
left out.Due to the difference of training datasets and stochastic initiation of
model weights, a diverse committee ofMILPs is provided. Given a structure
to have its κL evaluated, this committee give different predictions of its
potential energy, and the standard deviation of them is defined as the
structural uncertainty.

For each iteration, the structurewith highest uncertaintywill be rattled 8
times and have their DFT reference data calculated to be added to dataset.
This protocolwill stop if all structural uncertainties are below the threshold of
15meV atom−1. Noted that the configurations of each structure will only be
added to the dataset once, which may also call the stop of the active learning
progress. Ultimately, all configurations are used to train a final MLIP.

To be more specific, the initial dataset encompasses 1000 configura-
tions chosen from GAP-2020 utilizing FPS on the feature space defined by
their respective SOAP descriptors. This dataset is progressively enriched
with configurations of structures identified to have high uncertaintymarked
by DFT calculations during the ETC process. The committee and final
MLIPs are all Allegro potentials with the same hyperparameters as the pre-
trained Allegro model. As for configurations of DFT calculation, they are
detailed in the follow part.

Configurations of DFT calculation
The configurations of DFT calculation for MLIPs dataset construction and
κL validation are the same, both implemented in the Vienna Ab initio
Simulation Package (VASP). We perform spin-polarized calculations with
the optB88-vdW dispersion inclusive exchange–correlation functional80,81,
with an energy cutoff of 600 eV and a dense k-spacing of 0.15 Å−1.

Lattice thermal conductivity calculations
In this work the intrinsic κL is calculated by solving the phonon Boltzmann
transport equation (BTE) in the framework of anharmonic lattice
dynamics82,83, with interatomic force constants (IFCs) derived from either
MLIPsorDFT.Although the relaxation timeapproximation(RTA)method is
known to underestimate κL compared to the direct inversion solution of
BTE84–86, when exploring ultrahigh κL materials using MLIPs, the RTA
method is used for computational efficiency. The difference between the two
methods turns out to have minimal impact on our final outcomes (Fig. S5).
For DFT validation, κL are obtained by full converged solution of BTE. Only
the lowest order of anharmonic scattering, namely three-phonon scattering, is
considered here for computational efficiency. The harmonic and anharmonic
IFCs are calculatedunder 3×3×3 supercells byfinite displacement difference
approach with a cutoff radius of 3Å utilizing the Phonopy and Phono3py
software87,88 and the mesh numbers multiply the respective lattice lengths are
set to exceed 25. We conduct two convergence tests: one for the cutoff radius
(Fig. S6) and one for the mesh sizes (Fig. S7). The good convergence of both
tests verifies that our choice of these two parameters is reasonable.

Data availability
The datasets used and/or analyzed during the current study available from
the corresponding author on reasonable request.
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