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Data-driven methodologies have transformed the discovery and prediction of hard
materials with well-defined atomic structures by leveraging standardized datasets,
enabling accurate property predictions and facilitating efficient exploration of design
spaces'>. However, their application to soft materials remains challenging because

of complex, multiscale structure-property relationships*-. Here we present a data-
driven approach that integrates data mining, experimentation and machine learning
to design high-performance adhesive hydrogels from scratch, tailored for demanding
underwater environments. By leveraging protein databases, we developed a descriptor

strategy to statistically replicate protein sequence patterns in polymer strands by
ideal random copolymerization, enabling targeted hydrogel design and dataset
construction. Using machine learning, we optimized hydrogel formulations from
aninitial dataset of 180 bioinspired hydrogels, achieving remarkable improvements
inadhesive strength, with a maximum value exceeding 1 MPa. These super-adhesive
hydrogels holdimmense potential across diverse applications, from biomedical
engineering to deep-sea exploration, marking a notable advancement in data-driven
innovation for soft materials.

Designing soft materials, such as gels and elastomers, is a complex
task. It requires selecting appropriate types and quantities of building
blocks (for example, monomers) and determining their arrangementin
the material, creating a gigantic design space with countless possible
combinations. Moreover, soft materials exhibit intricate behaviours
because of the interplay of weak molecular interactions and thermal
fluctuations, resulting in complex structure-property relationships
across multiple time and length scales, with mesoscale structures play-
ing animportant part’.

These complexities hinder the development of accurate predictive
theories or computational models, often rendering soft material dis-
coveryreliantonexperimental trial and error. To reduce experimental
demands, data-driven strategies are becoming increasingly essen-
tial®’. Emerging tools, such as datamining (DM) and machine learning
(ML), are transforming the field by advancing the analysis of complex
behaviours, improving property predictions and driving theory and
modelling development>°%,

Effectively integrating these tools into an end-to-end design frame-
workisimportant for accelerating soft material discovery. Animportant
first stepis the creation of high-quality datasets, which is complicated
by the several potential material designs and limited experimental
throughput™?®, Adhesive hydrogels, for example, are a promising class
of soft material widely sought for high-end applications. Yet achiev-
ing instant, strong and repeatable underwater adhesion remains a

longstanding challenge!®”. Previous studies on this material have iden-
tified several monomer types, making it difficult to form a consistent
dataset or forge asimple design principle for optimizing performance'®.
Biological soft tissues, as naturally evolved soft materials, exemplify
complex structures tailored for specific functions'®. Studying these
systems can help reduce the design space for synthetic soft materials',
such as gecko-inspired dry adhesives?*?. Particularly, adhesive pro-
teins, found across diverse organisms (for example, archaea, bacteria,
eukaryotes and viruses), enable adhesion in wet environments. Despite
their diversity, these proteins share common sequence patterns that
offer valuable insights into designing underwater adhesives*. How-
ever, identifying meaningful patterns, translating theminto synthesis
strategies and enabling extrapolative predictions by machine learning
remain main challenges to achieving an end-to-end design model.
Here we introduce a new data-driven approach that integrates
DM, experimentation and ML for the efficient development of high-
performance underwater adhesive hydrogels (Fig.1a). By mining adhe-
sive protein databases, we extract characteristic sequence features to
guide hydrogel design. These features are replicated in 180 synthetic
hydrogels using random copolymerization and relative composition
strategies, which strike abalance between biological fidelity and practi-
calsynthesis. Among these DM-driven hydrogels, several exhibit greater
adhesive strength (F,) than thosereportedin theliterature (Fig. 1b). This
set 0of 180 synthetic hydrogels forms a small yet high-quality dataset
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Fig.1|Data-driven de novo design ofunderwater adhesive hydrogels.
a, Conceptualscheme of the proposed approachintegrating DM,
experimentationand ML to design high-performance adhesive hydrogels.
b, Comparison of underwater adhesive strength (F,) between previously

for further optimization by ML, leading to ML-driven hydrogels with
underwater F, exceeding1 MPa—an order-of-magnitude improvement
over previously reported underwater adhesive hydrogels and elasto-
mers' (Supplementary Fig. 1).

The obtained super-adhesive hydrogels hold tremendous potential
across awiderange of applications, offering reliable solutions for which
traditional adhesives often fall short (Supplementary Fig.1). They could
improve medical procedures, advance biomedical engineering, sup-
port marine farming and enable deep-sea exploration. The substantial
performance improvements showcase the success of our data-driven
approach in designing high-performance hydrogels. Moreover, this
approachis highly versatile and can be adapted to develop other types
of functional soft materials, opening new possibilities in various fields.

DM of adhesive proteins

We compiled a dataset containing 24,707 adhesive proteins gathered
fromthe National Center for Biotechnology Information (NCBI) protein
database, using the keyword ‘adhesive protein’. This dataset includes
proteins from 3,822 different organisms across archaea, bacteria, eukar-
yotes, viruses and artificial proteins. Statistical analysis shows that the
average length of those adhesive proteins ranges from approximately
300-500 amino acids (Supplementary Fig. 2).

To identify the most representative protein sequences and mini-
mize the impact of individual variations, we ranked all species by the
number of adhesive proteins they contain and selected the top 200
species for further analysis (Fig. 2a and Supplementary Fig. 3). We
then performed multiple sequence alignment using Clustal Omega?
to determine consensus sequences for each species (Extended Data
Fig.1), which are believed to play a crucial partin maintaining protein
stability and adhesion throughout evolution®*%,

Toreduce the dimensionality of the variables, the 20 canonical amino
acids were grouped into six classes based on their physicochemical
properties: hydrophobic, nucleophilic, acidic, cationic, amide and
aromatic (Supplementary Fig.4). The consensus sequences were then
encoded into functional class sequences. For consistency in the encod-
ing, glycine, alanine and proline were excluded from the hydrophobic
class because of their smaller side chains, which are proposed to have a
lessimportantroleininterfacial contacts and interactions compared
with other amino acids®.

Theblocklength of each functional classin the encoded sequences
is typically less than three (Fig. 2b), indicating substantial sequence
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heterogeneity inadhesive proteins even at the coarse functional class
level. Different species exhibited distinct patterns in the pairwise fre-
quencies of these functional classes (Fig. 2c). This suggests preferences
for specific functional class pairings within the sequences, hinting at
anunderlying order beneath the observed sequence heterogeneity.

Based on these insights, we devised a strategy for hydrogel design
using six functional monomers to represent the six functional classes of
amino acids. Although directly replicating functional class sequences
offers astraightforward way to mimic protein primary structures and
functions, achieving precise control over monomer sequencesinsyn-
thetic polymers remains a marked challenge. Therefore, we aimed
to statistically replicate the sequence features of functional classes
through ideal random copolymerization of the six functional mono-
mers, which has minimal composition drift during polymerizationand
enables statistically controlled sequences®¥ %,

For this purpose, we used arelative composition approach to capture
the neighbouring preferences of amino acid functional classes in the
synthetic polymer chains. Specifically, we counted the occurrences of
21distinct pair types for the six functional classes, denoted as n; (where
i,j=1,...,6),along the functional class sequences for each species
and ranked them in descending order. The top five pairs, collectively
accounting for approximately 50% of all occurrences, were used to
compute the monomer proportions of each functional class as
@, =N/%; N, where N;=3; (n; + n;) for each species (Extended Data
Fig.1and Supplementary Data1and 2). These relative compositions
served as descriptors for the corresponding species. From the top 200
species, we derived 180 unique compositions after removing 20 dupli-
cates (Supplementary Table 2), which were then used for hydrogel
synthesis.

Synthesis of DM-driven hydrogels

Six functional monomers (Fig. 3a), each representing one of the six
functional classes of amino acids, were selected. Their pairwise reac-
tivity ratios, determined by 'H NMR analysis, were close to unity when
copolymerized in the cosolvent dimethyl sulfoxide (DMSO) using
free-radical polymerization (Supplementary Fig. 5 and Supplemen-
tary Table 3). These near-unity values indicate minimal composition
drift during copolymerizationin DMSO (Supplementary Figs. 6 and 7).

Monte Carlo simulations based on the Mayo-Lewis model were per-
formed to analyse the sequence properties of the six functional mono-
mers in the corresponding 180 heteropolymers, using the measured
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Fig.2| DM ofadhesive proteins and formulation design. a, Schematic of the
amino acids feature extraction process used to derive bioinspired formulations
through adhesive protein DM, encoding and relative composition computation.
b, Distribution of block length (thatis, the number of consecutive residues from
the same functional class) for the six functional classes, shown along the

reactivity ratios (Supplementary Table 3) and the derived monomer
proportions (¢,) (ref. 30) (Supplementary Table 2). The resulting distri-
butions of monomer block lengths and pairwise frequencies (Fig. 3b,c)
closely matched those observed in adhesive proteins (Fig. 2b,c), con-
firming that our synthesis protocol effectively captures key statistical
features (Supplementary Fig. 8), such as sequence heterogeneity and
neighbouring preferences.

Following the derived formulations, 180 DM-driven gels, labelled
G-001to G-180, were synthesized by one-pot free-radical copolymeriza-
tion of the functional monomers with crosslinkersin DMSO (Methods
and Supplementary Fig. 9). After solvent exchange from DMSO to nor-
malsaline (0.154 MNaCl), the hydrogels were characterized by volume
swelling ratio, rheological behaviour and underwater adhesive strength
(F,).Adhesion was assessed using tack tests (Fig.3d and Supplementary
Fig.10) onaglass substratein normalsaline, with aloading force of 10 N
and a10-s contact time applied for rapid screening.

Figure 3e shows the measured F, for all 180 hydrogels (15 mm diam-
eter, 0.3-0.8 mm thickness). Among them, 16 hydrogels exhibited
robust adhesion with F, >100 kPa, and 83 hydrogels showed F, > 46 kPa,
surpassing the average reported in the literature (Supplementary
Table 1). Notably, G-042 (derived from Escherichia, Supplementary
Fig.8), hereafter referred to as G-max, presented the highest adhesive
strength of 147 kPa.

The high F, values demonstrate the effectiveness of our data-driven
approach in guiding the de novo design of adhesive hydrogels, high-
lighting two key insights. First, the functional class sequences extracted
through DM capture the essential sequence features of adhesive pro-
teinsthatareimportant for wet adhesion. Second, usingideal random

horizontal axis, based on the consensus sequences of the top 200 species.

¢, Pairwise frequency distribution of the 21 functional class pair types along
encoded sequences, shown for the entire dataset and for eight representative
species, shown along the horizontal axis, categorized by their biological
classificationsinthe database.

copolymerization of functional monomers to statistically replicate
these sequence features through relative compositions provides an
effective strategy, bridging the gap between de novo design and mate-
rial fabrication.

To validate the first insight, we examined the adhesion perfor-
mance of hydrogels formulated using sequences derived from DM of
resilin proteins. These hydrogels exhibited poor underwater adhesion
(Extended Data Fig. 2 and Supplementary Table 4), underscoring the
importance of specific sequence features from adhesive proteins for
effective adhesion.

To validate the second insight, we analysed the adhesion perfor-
mance of hydrogels synthesized by non-ideal copolymerization in
dimethyl sulfide (DMS). In DMS, most pairwise reactivity ratios of
monomers deviate significantly from unity (Supplementary Table 3),
resultingin composition drift during polymerization and the formation
ofblocky sequences (Supplementary Figs. 6 and 7). Figure 3f compares
two variants of G-004, showing that the variant synthesized in DMS
appeared more translucent and exhibited markedly lower F, than its
counterpart withstatistical sequences synthesized in DMSO. This find-
ing underscores the important role of ideal random copolymerization
of functional monomers (with near-unity reactivity ratios) in achiev-
ing the statistical sequence features essential for mimicking protein
functions'?.

Toimprove F,, we assessed the correlations between F, and ¢, using
Kendall’s 7 coefficients® and characterized the dependence of F,
on the swelling of hydrogels and rheological behaviours (Extended
Data Fig. 3). We found that ¢,1ac, @5 and @pes exhibit weak positive
correlations with F,, whereas @yea, Panm and @cpea Show weak negative
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correlations. Nevertheless, these weak correlations, along with the
intricate structure-property relationships (Extended DataFig. 3), are
insufficient to directly predict hydrogel formulations for optimal adhe-
sion, highlighting the complex synergistic effects of monomer species,
sequences and network structures.

Hydrogel optimization by ML

Next, we used ML to explore hydrogel formulations with enhanced
adhesive strength, starting with the 180-hydrogel dataset. Among nine
ML models benchmarked (Supplementary Tables 5 and 6), Gaussian
process (GP)* and random forest regression (RFR)* emerged as the
most effective base models for predicting F, from ¢, achieving low test
error while minimizing overfitting (Extended Data Fig. 4).

Based on these models, we implemented sequential model-based
optimization (SMBO)* to propose new hydrogel formulations, taking
expected improvement (El) as the acquisition function. To reduce the
number of experimental rounds of hydrogel synthesis and characteriza-
tion, we designed abatched SMBO workflow, which allows for multiple
formulation proposals in a single round.

To enhance efficiency, we explored several batched SMBO meth-
ods, using trained base models as the hypothetical value providers
(P) and GP, RFR, extra trees (ETR)** and gradient boosting machine
(GBM)* as the Elmaximizers (M), collectively denoted as P-M. We also
implemented traditional Bayesian optimization methods, using kriging
believer (GP_KB) (ref. 36), maximum and minimum constant liar (GP_
CLmax, GP_CLmin) (ref. 36) and local penalization (GP_LP) (refs. 36,37)
as heuristics for determining batch points. For validation, we selected
the top 10 formulations (out of 40 proposed per batch), sorted by either
El magnitude or predicted F, (PRED) as experimental test sets.

All validation followed the same protocol as for the training set to
ensure dataconsistency. Figure 4a shows the true F, values for formula-
tions proposed by different SMBO methods (Supplementary Table 7).
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speciesshowninFig.2c.d, Schematic of the tack test for measuring underwater
adhesion. e, Adhesive strength (F,) of the 180 hydrogels. f, Stress-displacement
profiles of two G-004 variantsin the tack test: (i) statistical sequences
synthesized in DMSO and (ii) block-like sequences synthesized in DMS.
Insetimages show the appearance of the two hydrogels. Adhesion tests were
conducted underal0-Nloading force applied for 10 sonaglass substratein
normal saline (0.154 M NaCl). This test condition was used for rapid screening.

Non-SMBO baselines, GP_enu and RFR_enu, which selected the top five
PRED from an enumeration of 10 million random formulations, failed
toimprove F,beyond the training data. By contrast, all SMBO methods
achieved higher F,, with GP_KB and RFR-GP as the top performers, and
RFR-GP yielding the highest F, overall.

We further tested a ‘warm-start’ strategy using RFR-GP by adding
10 additional data points generated by RFR to the training set. This
variant, termed RFR-GP*, exhibited the highest F, among all models.
Furthermore, formulations chosen through PRED sorting generally
outperformedthoseselected by Elsorting. These findings demonstrate
the effectiveness of batched SMBO and suggest the optimal models
and strategies for improving workflow efficiency.

The validation outcomes expanded our hydrogel dataset. To assess
the exploration abilities of RFR-GP and GP_KB within the SMBO frame-
work, we conducted two additional rounds of ML optimization and
experimental validation. Although new high-F, formulations were
identified, none surpassed the maximum F, achieved in the first
round (Extended Data Fig. 5). We suspect that the functionalities of
the adopted monomer species may account for the observed perfor-
mance plateau, and further optimization rounds were not pursued.

The relationship between F, and ¢, in the final dataset (containing
341 hydrogels) is shown in Fig. 4b, using uniform manifold approxi-
mation and projection (UMAP)* for dimensional reduction (from six
to two dimensions). Notably, formulations generated by RFR-GP and
GP_KB show minimal overlap with the original 180-hydrogel dataset,
indicating extrapolation during optimization. RFR-GP data points are
more scattered than those of GP_KB, suggesting broader exploration
compared with traditional Bayesian optimization.

To assess the influence of ¢, on F,, we used SHAP (SHaply Additive
exPlanations)® with the RFR model trained on the final 341-hydrogel
dataset. The SHAP summary plot (Fig. 4c) shows that high values of ¢,
and ¢, significantly enhance F,. This is because BA and PEA effectively
expel water from the contact interface, and, when neighbouring with
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ATAC (Supplementary Fig.11), they could enhance electrostaticinterac-
tions with the negatively charged glass surface?*°** (Supplementary
Fig.12). By contrast, high values of @ycr, @cpea, and Paamtend toreduce F,.
Interestingly, ¢ mac has a dual effect (Supplementary Fig.13): low levels
diminish electrostatic interactions, whereas excessive @ ,c increases
hydrogel swelling, limiting polymer-surface contact and reducing F,.
Therefore, amoderate @ is crucial.

Theseinsights, consistent across all three ML rounds, establish a clear
design principle for achieving strong underwater hydrogel adhesion to
glass surfaces using the selected functional monomers:incorporating
BA, PEA and ATAC is key. This combination leverages both hydrophobic
effectsand electrostaticinteractions toenhance underwater adhesion
to negatively charged surfaces. The hydrogels with the highest F, from
each ML round, denoted as R1-max, R2-max and R3-max, are exclu-
sively composed of these three monomers (Fig. 5a) and share similar
statistical sequence features as indicated by Monte Carlo simulations
(Supplementary Figs. 11 and 14).

Performance of super-adhesive hydrogels

We conducted detailed studies on the three top-performing ML-driven
hydrogels (R1-max, R2-max and R3-max) and compared them with the
best DM-driven hydrogel (G-max) (Fig. 5, Extended Data Fig. 6 and Sup-
plementary Table 8). Intheir as-prepared state, all gels were transparent
and exhibited frequency-independent storage moduli (G’) (Extended
DataFig. 6a), indicating negligible inter- orintramolecular aggregation
in DMSO. Despite compositional differences, comparable G’ values
suggest similar network topologies.

On equilibration in normal saline, all gels underwent shrinkage
(Extended Data Fig. 6¢). In contrast to G-max, the ML-driven hydro-
gels exhibited increased opacity (Fig. 5b), stronger viscoelasticity
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representation of the relationship between F,and reduced monomer
proportions (¢,), highlighting the formulations proposed by GP_KB and RFR-GP
(withinthe SMBO framework) across different rounds. Symbolsize represents
themagnitude of adhesive strength. c, SHAP beeswarm plot, ranked by mean
absolute SHAP values, showing the influence of ¢;on F, within the final dataset
of341samples as analysed by the trained RFR model.

and higher moduli (Extended Data Fig. 6b). This suggests that their
higher hydrophobic BA and aromatic PEA content (Fig. 5a) promotes
strong associations of copolymer strands in aqueous media, which
facilitate energy dissipation. Moreover, the ML-driven hydrogels
exhibited greater mechanical strength and toughness (Supplementary
Video1), asevidenced by the larger areaunder their stress-strain curves
(Fig. 5¢). The enhanced viscoelasticity and toughness contributed to
theirimproved adhesion compared with G-max**.

To comprehensively evaluate adhesive performance, we conducted
tack tests across a range of test conditions, substrates and solution
media. Generally, F, increased with increasing loading force and contact
time, eventually reaching a plateau (Fig. 5d and Extended Data Fig. 7),
attributed to enhanced interfacial contact and water drainage at the
hydrogel-substrate interface. These plateau values were used to com-
pare maximum adhesion performance across substrates and solutions.

Innormalsaline, R1-max achieved a maximum F, exceeding1 MPaon
glass (Fig. 5e) and maintained robust adhesion over 200 attachment-
detachment cycles (Extended DataFig. 8). It also demonstrated strong
adhesiontoavariety of substrates, including inorganic materials, plas-
tics and metals, as confirmed by lap shear and peeling tests (Extended
DataFig. 9). Notably, R1-max sustained joints of plates made from dif-
ferent materials under a 1-kg shear load for over 1 year, showcasing
exceptional durability (Fig. 5f and Supplementary Fig. 15).

In artificial seawater (0.7 M NaCl), all three ML-driven hydrogels
exhibited similar levels of strong adhesion (Fig. 5g). In deionized
water, however, R2-max outperformed the others, exhibiting cavi-
tation during debonding (Supplementary Fig. 16). These results
indicate that small compositional variations can affect adhesion per-
formanceindifferentenvironments, reflecting a principle observedin
nature—adaptability over universal optimization—in which biologi-
cal systems evolve to perform optimally in their specific environments.
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a, Formulations of the gels. b, Photographicimages showing the appearance
ofthegels. ¢, Uniaxial tensile stress-strain curves of the gels at astretch rate of
100 mm min™. d, F,of hydrogels as a function of contact time (left) and contact
force (right) onglassinnormalsaline. e, F, of RI-max on various substrates
innormalsaline. PC, polycarbonate; PMMA, poly(methyl methacrylate);

PF, phenol formaldehyde; POM, polyoxymethylene; PP, polypropylene;

This finding underscores theimportance of ensuring data consistency
in ML optimizations, as hydrogel performance varies with environ-
mental conditions.

To demonstrate practical applicability, several case studies were
conducted. R1-max was used to affix a rubber duck to a seaside rock
(Extended DataFig.10a). Its strong adhesion in saltwater enabled the
duck to withstand continuous ocean tides and wave impacts, reveal-
ing its suitability for harsh marine environments (Supplementary
Video 2). R2-max, exhibiting the highest adhesion in deionized water
(Fig. 5g), successfully sealed a 20-mm-diameter hole at the base of
a 3-m-tall polycarbonate pipe filled with tap water (Extended Data
Fig.10b). Itinstantly stopped the high-pressure water leak (Supple-
mentary Video 3), showcasing a level of performance that common
adhesives cannot match (Extended Data Fig. 10c). Furthermore, all
these hydrogels demonstrated good biocompatibility, as confirmed
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PTFE, polytetrafluoroethylene; Al, aluminium alloy; Ti, titanium alloy; SS,
stainless steel. f, Photographicimage showing R1-max (25 mm x 25 mminsize,
about 0.4 mm thickness) joining pairs of ceramics (left), glass (middle) and
titanium (right) plates under al-kgload in normalsaline for over1year.g, F,on
glass substrate in deionized water, normal saline and artificial seawater (0.7 M
NaCl) for hydrogels equilibrated in the corresponding solutions. The asterisk
on G-max indicates cohesive failure during testing. Error bars represent the
standard deviation of N =3 measurements.

by subcutaneous implantation in mice (Supplementary Fig. 17), sup-
porting their potential for biomedical applications.

In summary, we introduced a data-driven approach that integrates
theextraction of valuable sequence information from proteins, scalable
polymer synthesis and iterative ML to address longstanding challenges
inthe de novo design and development of soft materials. Beyond adhe-
sive hydrogels, this data-driven design framework offers a systematic,
scalable end-to-end approach for developing a wide range of func-
tional soft materials. However, challenges remain, primarily because
of limitations in monomer diversity, polymer synthesis technologies
for controlling monomer sequences to a scale suitable for materials
development and dataset scalability. Overcoming these challenges will
require expanding modular monomer libraries, advancing polymeriza-
tion techniques and developing physics-informed ML models that can
generalize across sparse, multiscale datasets.
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Methods

Hydrogel fabrication

Allcopolymer gels were synthesized by one-step free-radical copolym-
erization of monomers with achemical crosslinker. The crosslinker con-
centrationwas fixed at 0.1 mol%relative to the total monomer content
tobalance the elasticity and deformability of the gels’. DMSO solutions
containing functional monomers (total concentration of 2.4 M) with
compositions derived from DM and ML (Supplementary Tables2and 7),
chemical crosslinker (glycerol 1,3-diglycerolate diacrylate, 2.4 mM),
and UVinitiator (2-oxoglutaricacid, 6 mM) were used. For example, to
prepare the G-max gel, 1.819 g of BA, 0.413 g of HEA, 0.264 g of CBEA,
0.561 g of ATAC, 0.441 g of PEA, 8.4 mg of glycerol 1,3-diglycerolate
diacrylate and 8.8 mg of 2-oxoglutaric acid were added to a10 ml volu-
metric flask, followed by DMSO toreach 10 ml. The precursor solution
was transferred to a glove box to remove oxygen, poured into a reac-
tion cell (two 10 cm x 10 cm glass plates, 0.5-mm spacing) and irradi-
atedwith UV light (365 nm wavelength, 4 mW cm2intensity) for 8 hto
form gels (Supplementary Fig. 9a). After UV irradiation, over 99% of
the monomers were converted into polymers, as confirmed by NMR
(Supplementary Fig. 9b).

The as-prepared organogels were then immersed in normal saline
(0.154 MNaCl) toremove solvent and residual chemicals, with the saline
exchanged every 12 hfor atleast 2 weeks until swelling equilibrium was
reached. Hydrogels were stored in normal saline before use.

Underwater adhesion characterization

The tack test was conducted using a SHIMADZU tester (Autograph
AG-X) equipped with Trapezium X software. Hydrogel (0.3-0.8 mm
thickness) at swelling equilibrium was adhered to the probe using
cyanoacrylate adhesive (super glue). For rapid screening, DM-driven
hydrogels fromthe training round and ML-driven hydrogels from three
optimization rounds, were prepared as 15 mm diameter samples. For
detailed adhesion studies, 10 mm diameter samples were used to avoid
exceeding the force range of the instrument. This change in diameter
did not affect the adhesive strength results. The hydrogel on the probe
was thenimmersed in a test solution (for example, normal saline) for
Smintoreachequilibrium. The probe descended towards the substrate
at1 mm minuntil aloading force of 10 Nwas applied, maintained for
10 s and withdrawn at 10 mm min (Supplementary Fig. 10). These
test conditions were used as a standard protocol unless otherwise
specified. For repeated adhesion tests, hydrogels rested underwater
for 5 min between cycles, with glass substrates replaced every 100
tests. For prolonged attachment-detachment cycles (Extended Data
Fig.8),a5Nloading forceandalO s contact time were used to minimize
gel fatigue. Each sample was tested at least three times. For hydrogel
dataset construction, the highest adhesive strength recorded for each
sample was reported as F,, representing maximum adhesion perfor-
mance under the specific conditions.

Lap shear adhesive strength was measured using a universal testing
machine (UTM, INSTRON 5965). A hydrogel (10 mm diameter, area
A=78.5mm?) at swelling equilibrium was sandwiched between two
glass slides, pressed at 20 N for 1 min in normal saline. Shear loading
was applied at 50 mm min™. Shear adhesive strength (F,) was calculated
as F, = F,,,./A, where F,.,, is the maximum loading force. For adhesion
durability tests (Supplementary Fig. 15), the sandwiched assembly was
stored in normal saline for varying durations before testing.

Interfacial toughness was measured by 180° peeling tests using
INSTRON 5965. Hydrogel strips (10 mm x 150 mm) were adhered to a
glass substrate in normal saline using mild finger pressure, followed by
a2 kghandrollerappliedineachdirection for1 minto ensure uniform
contact. Polyethylene terephthalate (PET) films (50 pm thickness)
served as astiff backing. Peeling tests were conducted at 50 mm min™.
Interfacial toughness (G.) was calculated as G. = 2F /w, where F_is the
plateau force and wis the sample width (10 mm).

DM of adhesive proteins

A comprehensive dataset of adhesive proteins was compiled fromthe
NCBI protein database, using ‘adhesive proteins’ as the query keyword.
Atotal of 24,707 protein sequences from 3,822 different organisms
(bacteria, viruses, eukaryotes and animals) were collected without
additional data cleaning. Based on taxonomy annotations, proteins
were grouped by species, and a consensus sequence was generated
for each species to capture common sequence patterns and reduce
the influence of individual variations.

The dataset included 3,111 species, noting that taxonomic overlap
results in protein counts not summing to 24,707. For robust analysis,
thetop 200 species, ranked by the number of distinct proteinsidenti-
fied per species, were selected for further study.

Protein sequences were exported in FASTA format® using the Bio.
SeqlOinterface in BioPython*. Consensus sequences were computed
with Clustal Omega?®, which performs multiple sequence alignment
by generating a distance matrix from pairwise alignments, construct-
ing a guide tree based on evolutionary relationships and progres-
sively aligning sequences from the closest to the most distant. The
resulting alignment identifies the most frequent residues at each
position, yielding a consensus sequence that highlights conserved
regions.

Clustal Omega was executed with the command:

s

./clustalo -i “input_file” --outfmt=clu-o “output_aln_file” -v

where “input_file” and “output_aln_file” denote the input protein seq-
uences and output consensus sequences, respectively. The 200 consen-
sus sequences generated were used for subsequent sequence analysis
and hydrogel formulation design.

ML methods

Asix-dimensional feature vector, @; = [@pa, Priea Dcsenr Patacs Pasms Preals
was used to represent monomer proportionsin hydrogels. The target
variable was adhesive strength, F,. To model the relationship between
¢;and F,, we explored both linear and non-linear ML models (Supple-
mentary Tables 5 and 6).

Linear modelsincluded least absolute shrinkage and selection opera-
tor regression (Lasso) and ridge regression (Ridge). Non-linear models
comprised k-nearest neighbours (KNN), kernel ridge regression (KRR),
support vector regression (SVR), random forest regression (RFR),
gradient boosting regression with XGBoost (XGB), extra trees regres-
sion (ETR) and Gaussian process (GP) with a Matérn kernel*>**, These
non-linear models encompass non-parametric (KNN), kernel-based
(KRR, SVRand GP) and tree-ensemble (RFR, XGB and ETR) approaches,
enabling acomprehensive comparison®*>5*,

XGBwasofv.1.6.2, whereas the other models wereimplemented using
Scikit-learn (v.1.0.2) and Scikit-optimize (v.0.9.0). The hyperparameter
n_estimators was tuned using Optuna*®, whereas others were optimized
using grid search (Supplementary Table 6). A10-fold cross-validation
strategy was used to assess predictive performance on our dataset of
180 hydrogels, using root mean squared error (RMSE) as the metric. GP
and RFR, with the lowest RMSE in training-test error using a 90%/10%
train/test split (Extended Data Fig. 4), emerged as the top performer
and runner-up, respectively, and were subsequently used as the base
(surrogate) models.

To make extrapolative predictions, we tried three types of methods.
1. Exploitation-only enumeration:

* GP_enu: random sampling in the input space using the fitted GP

model.

* RFR_enu: random samplingin the input space using the fitted RFR

model.

« Ten million ¢;vectors were generated from a uniform distribution

[0,1.0) for each monomer, normalized to sum to 1.0. The top five


https://www.ncbi.nlm.nih.gov/protein/

vectors, ranked by predicted F,from each model, were experimen-
tally validated.
2. Batched BO:

» GP_KB:used GP predictions as the hypothetical values for selecting
the next data points maximizing EI.

» GP_CLmax: used the maximum F, (y_max) from the training set
as a hypothetical value for selecting the next data points with EI
maximums.

* GP_CLmin:used the minimum F, (y_min) for selecting the next data
points with El maximums.

+ GP_LP:incorporated alocally penalized term in El calculation®.

» GP_KB, GP_CLmax and GP_CLmin simplified the joint g-El prob-
ability calculation®® by using the GP prediction value as a hypo-
thetical value for selecting the next data points with Elmaximums.
Abatchssize of g=10 was selected.

3. Batched sequential model-based optimization (SMBO):

» GP-RFR: GP as the hypothetical value provider and RFR as the EI
maximizer.

* RFR-RFR: RFR as both the hypothetical value provider and the EI
maximizer.

» RFR-GP: RFR as the hypothetical value provider and GP as the El
maximizer.

* RFR-GP*: RFR-GP with awarm start, 10 RFR-generated points were
added to thereal dataset for GP regression.

* RFR-ETR: RFR as the hypothetical value provider and ETR as the
El maximizer.

» RFR-GBM: RFR as the hypothetical value provider and GBM as the
El maximizer.

« SMBO iteratively updates the surrogate model while exploring
promising data points®. GP and RFR, when used as the hypotheti-
calvalue providers, balance exploitation and exploration, whereas
GP_CLmax and GP_CLmin emphasize exploitation and exploration,
respectively®.

SMBO (Supplementary Algorithm 1) consists of four components:
the true function (f), global domain (X), acquisition function (S) and
surrogate model (M). Initial training data (D) are sampled from X, and
experimental F, values are obtained (line 1). The surrogate model M
isfitted to D (line 3) and S (El) identifies the next data point based on
predictive uncertainty (line4). This data point is subsequently validated
experimentally (line 5), updating D (line 6) for T iterations (line 2).

El quantifies expected improvement, f;* (y-y*)p(y)dy, over the
currentbest target (y*). Owing to the time-intensive nature of hydrogel
fabrication (each takes about 2 weeks), GP and RFR were used as the
hypothetical value providers, enabling the maximization of the joint
g-El probability without requiring new experiments per iteration.
El maximizers (GP, RFR, ETR and GBM) used hyperparameters from
Scikit-optimize (v.0.9.0).

For GP as the EImaximizer, the limited-memory Broyden-Fletcher-
Goldfarb-Shannon (L-BFGS-B) algorithm*® was executed 20 times per
iteration (40 iterations total) to identify the point with the highest El,
updating the GP prior. For the other three El maximizers (RFR, ETR
and GBM), 10,000 points were randomly sampled per iteration, as
numerical optimization is more suitable for tree-ensemble models
lacking gradient information. SMBO ran for 40 iterations with each EI
maximizer, selecting two sets of 10 data points in each iteration: the
top 10 ranked by El values (batch size g =10), and the top 10 ranked by

predicted F, values for experimental validation. These two sets may
overlap, and the total number of data points may be less than 20.

For BO methods (GP_KB, GP_CLmax, GP_CLminand GP_LP), the proce-
durewassimilar, except that the hypothetical value provider was either
GPitself (GP_KB and GP_LP) or constant values (y_max for GP_CLmax
and y_min for GP_CLmin).

After the first round, 109 validated points expanded the dataset to
289 hydrogels. The second and third rounds added 27 and 25 points,
respectively, resulting in a final dataset comprising 341 hydrogels.

Data availability

Alldataneededto evaluate the conclusionsinthe paperare presentin
the paper and/or the Supplementary Information. The data that sup-
port the findings of this study are available online at GitHub (https://
github.com/sheng-hu/hydrogels).

Code availability

ML algorithms and Python codes that support the findings of this
study are available online at GitHub (https://github.com/sheng-hu/
hydrogels).
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Extended DataFig.1|Sequence analysis of Enterobacteriaceae adhesive proteins. (a) Consensus sequence fragment. (b) Pairwise functional class counts
within the consensus sequence fragment. Complete data for the top 200 species are provided in Supplementary Dataland Supplementary Data 2.
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Extended DataFig.2|Datamining-driven hydrogels based ontheresilin
protein database. (a) Pairwise frequency distribution of 21 functional class
pairtypesinencoded consensus sequences for adhesive and resilin proteins
fromdata mining (DM). Theresilin dataset comprises 2,537 proteins sourced
from the NCBI protein database using the keyword “resilin.” (b) Average
monomer proportionsin formulations derived from adhesive and resilin
proteindatabases. (c) Adhesive strength (£,) of DM-driven hydrogels derived
fromtheresilin protein database. Asterisks indicate significant gel shrinkage
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during solvent exchange, making adhesion testing unfeasible for these
samples. Detailed formulations are included in Supplementary Table 7.
Adhesion tests were performed onaglass substrate in normalsaline usinga
tacktest withal0 Nloading force and al0-s contact time, consistent with
conditions used for DM-driven hydrogels derived from adhesive proteins.
Errorbarsrepresent the standard deviation of N=3 measurements.

(d) Comparison of average f,between DM-driven hydrogels derived from
adhesive and resilin protein databases.
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Extended DataFig. 3| Analysis of correlationsbetween adhesive strength
(F,) and properties of 180 bioinspired hydrogels. (a) Correlation between
monomer proportions (¢,) and F,, captured by Kendall's t coefficients. These
coefficientsreveal that ¢y, @, ;.- and ¢, have weak positive correlations
with F, while .., @, and @, Show weak negative correlations.

(b) Exampleillustrating the complexinterplay between ¢,and f,, due to the
synergistic effects of differentmonomers. Comparing G-074 to G-001, ¢, is
roughly thesame, ¢,,., and @, increase, and ¢, ., . decreases. Despite
Kendall’s t coefficients suggesting that the £, of G-074 should be lower than
that of G-001, the actual F, of G-074 is about five times higher. (c) Angular
frequency dependence of the storage modulus (G’) and loss modulus (G”) of
the G-042 hydrogel as an example. The slope (k) of G’is calculated from the line

connecting G’ values at frequencies of 0.1and 100 rad s'. Alarger slope indicates
greater viscoelasticity of the hydrogel. (d) £, as afunction of network properties
for the 180 bioinspired hydrogels. Q, G’, Tan 6 = G”/G’, and k represent the
volume swelling ratio, storage modulus ata frequency of10°rad s, loss factor
atafrequencyof10°rads™, and theslope of the G’ curve, respectively. These
results suggest that hydrogels with shrinking behavior (Q <1), moderate G’,
high Tan 6, and moderate k tend to exhibit higher F, values. All characterizations
were performed on gels equilibrated in normal saline (0.154 M NaCl). Adhesion
tests were conducted using atack test witha1l0 Nloading forceand a10-s
contacttime onaglasssubstrate to enable rapid screening and ensure
consistent comparisons across the dataset.
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Extended DataFig.4|Machine learning (ML) trained models. (a) Error plots across the nine ML models trained on the dataset of 180 bioinspired hydrogels,
for nine ML models using a90%/10% training-test split. Training data points are assessed vial0-fold cross-validation. Alower test error,combined with
represented by blue dots, while test data pointsare showninred. The dashed minimized overfitting (i.e.,asmaller gap between training and test errors),
lineindicates where the predicted values match the experimental data (truth). indicates amore effective regression model.

(b) Root meansquared errors (RMSEs) depicting the predictionaccuracy
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Extended DataFig. 5| Machine learning-driven optimizationand
experimental validationin three consecutive rounds. (a) Adhesive strength
(F,) of hydrogels fabricated in experiments according to the formulations
proposed by GP_KB and RFR-GP models. (b) Variations in performance metrics,
including: (i) successful rate (SR), defined as the fraction of the test set with
higher true F, than the training set; (ii) ratio of maximum true F, between the
testand training sets; and (iii) root mean squared errors (RMSEs) of the test

F, (kPa), Truth

F, (kPa), Truth

sets. Thesuccessrateand £, ratio decrease from the first round to the second
round and level offin the third round, implying convergence toward the global
optimum viaSMBO. Meanwhile, the RMSE decreases continuously over the
threerounds, indicating that expanding the training datasetimproves the
accuracy of regression models. (c) Parity plots comparing ML predicted F,
versustrue F,.
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Extended DataFig. 6 | Properties of top-performing hydrogels from
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dependence of storage modulus (G’) and loss modulus (G”) for the top-
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Extended DataFig.7|Adhesive strength (F,) of hydrogels under different contacttimes, and (d) atafixed contact time of 60 s with varying loading
tack test conditions. (a, b) Force-displacement curves of G-max hydrogel: forces. (e) F, of the10 samples that exhibited high adhesionsin Fig. 3e
(a) atafixedloading force of 10 Nwith varying contact times, and (b) at a fixed measured at differentloading force and contact time. Alladhesion tests were

contact time of 60 s with varyingloading forces. (c, d) Force-displacement
curves of RI-max hydrogel: (c) at afixed loading force of 10 Nwith varying

conducted in normal saline on glass substrates. Error bars represent the
standard deviation of N=3 measurements.
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Extended DataFig. 8| Repeated adhesion of the R1-max hydrogel. Adhesion
stability of the R1-max hydrogel (10 mm diameter, -0.4 mm thickness) over 200
attachment-detachment cycles onaglass substrate in normal saline. Testing
was conducted under a5 Nloading force and a10-s contact time.
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Extended DataFig. 9| Adhesion performance of the R1-max hydrogel on
various substrates. (a) Schematicillustration of lap shear and 180° peeling
tests for adhesion assessment. (b) Force-displacement curves from lap shear
tests of RI-max (10 mm diameter, ~0.4 mm thickness) adhering to glass, PET,
and PCsubstrates. (c) Force-displacement curves from180° peeling tests of
R1-max (10 mm x 150 mm strips, ~0.4 mm thickness) adhering to glass, PET,
PC,and porkbone surfaces. (d) Lap shear adhesive strength and 180° peeling
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interfacial toughness of R1-max on various substrates. (e) Photographic images
(fromdifferent perspective angles) showing R1-max (25 mm x 150 mm strips,
~0.4 mmthickness) being peeled away froma pork bone surface. All hydrogels
were equilibrated in normal saline before testing. Error barsrepresent the
standard deviation of N=3 measurements. Experimental details are provided
inthe Methods section. Theseresults highlight the exceptional adhesion
performance of R1-max on various surfaces.
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Extended DataFig.10 | Demonstration of data-drivenhydrogelsin
practical applications. (a) Photographicimages of R1-max adhering arubber
duck to aseaside rock, withstanding oceantides. (b) Photographicimages of
R2-max (6 cm x 6 cminsize, ~0.37 mm thickness) sealing a20-mm-diameter
hole at the base of a3-meter-tall PC pipe to halt high-pressure water leakage
(burst flow rate at the outlet of the hole was ~5.4 ms™). (c) Photographicimages
show (i) R2-max successfully repairing a20 mm hole at the base of a3-meter-tall

1

Leakage after

polycarbonate pipe filled with tap water; (ii) no water leakage was observed for
over 5monthsinair, with the gelbecomingtransparent upondrying, and the
opaqueregionindicating water penetration only around the hole; (iii) in
contrast,commercial FLEX TAPE® failed under the same conditions, with water
leakage occurring within1.5 h. These findings highlight the exceptional wet
adhesion performance of the R2-max hydrogel.
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