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Data-driven de novo design of super-adhesive 
hydrogels

Hongguang Liao1,10, Sheng Hu2,3,10, Hu Yang4, Lei Wang2,5, Shinya Tanaka2,5, 
Ichigaku Takigawa2,6 ✉, Wei Li2,7 ✉, Hailong Fan2,9 ✉ & Jian Ping Gong2,8 ✉

Data-driven methodologies have transformed the discovery and prediction of hard 
materials with well-defined atomic structures by leveraging standardized datasets, 
enabling accurate property predictions and facilitating efficient exploration of design 
spaces1–3. However, their application to soft materials remains challenging because 
of complex, multiscale structure–property relationships4–6. Here we present a data-
driven approach that integrates data mining, experimentation and machine learning 
to design high-performance adhesive hydrogels from scratch, tailored for demanding 
underwater environments. By leveraging protein databases, we developed a descriptor 
strategy to statistically replicate protein sequence patterns in polymer strands by 
ideal random copolymerization, enabling targeted hydrogel design and dataset 
construction. Using machine learning, we optimized hydrogel formulations from  
an initial dataset of 180 bioinspired hydrogels, achieving remarkable improvements 
in adhesive strength, with a maximum value exceeding 1 MPa. These super-adhesive 
hydrogels hold immense potential across diverse applications, from biomedical 
engineering to deep-sea exploration, marking a notable advancement in data-driven 
innovation for soft materials.

Designing soft materials, such as gels and elastomers, is a complex 
task. It requires selecting appropriate types and quantities of building 
blocks (for example, monomers) and determining their arrangement in 
the material, creating a gigantic design space with countless possible 
combinations. Moreover, soft materials exhibit intricate behaviours 
because of the interplay of weak molecular interactions and thermal 
fluctuations, resulting in complex structure–property relationships 
across multiple time and length scales, with mesoscale structures play-
ing an important part7.

These complexities hinder the development of accurate predictive 
theories or computational models, often rendering soft material dis-
covery reliant on experimental trial and error. To reduce experimental 
demands, data-driven strategies are becoming increasingly essen-
tial8,9. Emerging tools, such as data mining (DM) and machine learning 
(ML), are transforming the field by advancing the analysis of complex 
behaviours, improving property predictions and driving theory and 
modelling development5,10–13.

Effectively integrating these tools into an end-to-end design frame-
work is important for accelerating soft material discovery. An important 
first step is the creation of high-quality datasets, which is complicated 
by the several potential material designs and limited experimental 
throughput14,15. Adhesive hydrogels, for example, are a promising class 
of soft material widely sought for high-end applications. Yet achiev-
ing instant, strong and repeatable underwater adhesion remains a 

longstanding challenge16,17. Previous studies on this material have iden-
tified several monomer types, making it difficult to form a consistent 
dataset or forge a simple design principle for optimizing performance16.

Biological soft tissues, as naturally evolved soft materials, exemplify 
complex structures tailored for specific functions18. Studying these 
systems can help reduce the design space for synthetic soft materials19, 
such as gecko-inspired dry adhesives20,21. Particularly, adhesive pro-
teins, found across diverse organisms (for example, archaea, bacteria, 
eukaryotes and viruses), enable adhesion in wet environments. Despite 
their diversity, these proteins share common sequence patterns that 
offer valuable insights into designing underwater adhesives22. How-
ever, identifying meaningful patterns, translating them into synthesis 
strategies and enabling extrapolative predictions by machine learning 
remain main challenges to achieving an end-to-end design model.

Here we introduce a new data-driven approach that integrates 
DM, experimentation and ML for the efficient development of high- 
performance underwater adhesive hydrogels (Fig. 1a). By mining adhe-
sive protein databases, we extract characteristic sequence features to 
guide hydrogel design. These features are replicated in 180 synthetic 
hydrogels using random copolymerization and relative composition 
strategies, which strike a balance between biological fidelity and practi-
cal synthesis. Among these DM-driven hydrogels, several exhibit greater 
adhesive strength (Fa) than those reported in the literature (Fig. 1b). This 
set of 180 synthetic hydrogels forms a small yet high-quality dataset 
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for further optimization by ML, leading to ML-driven hydrogels with 
underwater Fa exceeding 1 MPa—an order-of-magnitude improvement 
over previously reported underwater adhesive hydrogels and elasto-
mers16 (Supplementary Fig. 1).

The obtained super-adhesive hydrogels hold tremendous potential 
across a wide range of applications, offering reliable solutions for which 
traditional adhesives often fall short (Supplementary Fig. 1). They could 
improve medical procedures, advance biomedical engineering, sup-
port marine farming and enable deep-sea exploration. The substantial 
performance improvements showcase the success of our data-driven 
approach in designing high-performance hydrogels. Moreover, this 
approach is highly versatile and can be adapted to develop other types 
of functional soft materials, opening new possibilities in various fields.

DM of adhesive proteins
We compiled a dataset containing 24,707 adhesive proteins gathered 
from the National Center for Biotechnology Information (NCBI) protein 
database, using the keyword ‘adhesive protein’. This dataset includes 
proteins from 3,822 different organisms across archaea, bacteria, eukar-
yotes, viruses and artificial proteins. Statistical analysis shows that the 
average length of those adhesive proteins ranges from approximately 
300–500 amino acids (Supplementary Fig. 2).

To identify the most representative protein sequences and mini-
mize the impact of individual variations, we ranked all species by the 
number of adhesive proteins they contain and selected the top 200 
species for further analysis (Fig. 2a and Supplementary Fig. 3). We 
then performed multiple sequence alignment using Clustal Omega23 
to determine consensus sequences for each species (Extended Data 
Fig. 1), which are believed to play a crucial part in maintaining protein 
stability and adhesion throughout evolution24,25.

To reduce the dimensionality of the variables, the 20 canonical amino 
acids were grouped into six classes based on their physicochemical 
properties: hydrophobic, nucleophilic, acidic, cationic, amide and 
aromatic (Supplementary Fig. 4). The consensus sequences were then 
encoded into functional class sequences. For consistency in the encod-
ing, glycine, alanine and proline were excluded from the hydrophobic 
class because of their smaller side chains, which are proposed to have a 
less important role in interfacial contacts and interactions compared 
with other amino acids26.

The block length of each functional class in the encoded sequences 
is typically less than three (Fig. 2b), indicating substantial sequence 

heterogeneity in adhesive proteins even at the coarse functional class 
level. Different species exhibited distinct patterns in the pairwise fre-
quencies of these functional classes (Fig. 2c). This suggests preferences 
for specific functional class pairings within the sequences, hinting at 
an underlying order beneath the observed sequence heterogeneity.

Based on these insights, we devised a strategy for hydrogel design 
using six functional monomers to represent the six functional classes of 
amino acids. Although directly replicating functional class sequences 
offers a straightforward way to mimic protein primary structures and 
functions, achieving precise control over monomer sequences in syn-
thetic polymers remains a marked challenge. Therefore, we aimed 
to statistically replicate the sequence features of functional classes 
through ideal random copolymerization of the six functional mono-
mers, which has minimal composition drift during polymerization and 
enables statistically controlled sequences19,27–29.

For this purpose, we used a relative composition approach to capture 
the neighbouring preferences of amino acid functional classes in the 
synthetic polymer chains. Specifically, we counted the occurrences of 
21 distinct pair types for the six functional classes, denoted as nij (where 
i, j = 1, …, 6), along the functional class sequences for each species  
and ranked them in descending order. The top five pairs, collectively 
accounting for approximately 50% of all occurrences, were used to 
compute the monomer proportions of each functional class as 
ϕ N N= /∑i i i i, where N n n= ∑ ( + )i j ij ji  for each species (Extended Data  
Fig. 1 and Supplementary Data 1 and 2). These relative compositions 
served as descriptors for the corresponding species. From the top 200 
species, we derived 180 unique compositions after removing 20 dupli-
cates (Supplementary Table 2), which were then used for hydrogel 
synthesis.

Synthesis of DM-driven hydrogels
Six functional monomers (Fig. 3a), each representing one of the six 
functional classes of amino acids, were selected. Their pairwise reac-
tivity ratios, determined by 1H NMR analysis, were close to unity when 
copolymerized in the cosolvent dimethyl sulfoxide (DMSO) using 
free-radical polymerization (Supplementary Fig. 5 and Supplemen-
tary Table 3). These near-unity values indicate minimal composition 
drift during copolymerization in DMSO (Supplementary Figs. 6 and 7).

Monte Carlo simulations based on the Mayo–Lewis model were per-
formed to analyse the sequence properties of the six functional mono-
mers in the corresponding 180 heteropolymers, using the measured 
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Fig. 1 | Data-driven de novo design of underwater adhesive hydrogels.  
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reactivity ratios (Supplementary Table 3) and the derived monomer 
proportions (ϕi) (ref. 30) (Supplementary Table 2). The resulting distri-
butions of monomer block lengths and pairwise frequencies (Fig. 3b,c) 
closely matched those observed in adhesive proteins (Fig. 2b,c), con-
firming that our synthesis protocol effectively captures key statistical 
features (Supplementary Fig. 8), such as sequence heterogeneity and 
neighbouring preferences.

Following the derived formulations, 180 DM-driven gels, labelled 
G-001 to G-180, were synthesized by one-pot free-radical copolymeriza-
tion of the functional monomers with crosslinkers in DMSO (Methods 
and Supplementary Fig. 9). After solvent exchange from DMSO to nor-
mal saline (0.154 M NaCl), the hydrogels were characterized by volume 
swelling ratio, rheological behaviour and underwater adhesive strength 
(Fa). Adhesion was assessed using tack tests (Fig. 3d and Supplementary 
Fig. 10) on a glass substrate in normal saline, with a loading force of 10 N 
and a 10-s contact time applied for rapid screening.

Figure 3e shows the measured Fa for all 180 hydrogels (15 mm diam-
eter, 0.3–0.8 mm thickness). Among them, 16 hydrogels exhibited 
robust adhesion with Fa > 100 kPa, and 83 hydrogels showed Fa > 46 kPa, 
surpassing the average reported in the literature (Supplementary 
Table 1). Notably, G-042 (derived from Escherichia, Supplementary 
Fig. 8), hereafter referred to as G-max, presented the highest adhesive 
strength of 147 kPa.

The high Fa values demonstrate the effectiveness of our data-driven 
approach in guiding the de novo design of adhesive hydrogels, high-
lighting two key insights. First, the functional class sequences extracted 
through DM capture the essential sequence features of adhesive pro-
teins that are important for wet adhesion. Second, using ideal random 

copolymerization of functional monomers to statistically replicate 
these sequence features through relative compositions provides an 
effective strategy, bridging the gap between de novo design and mate-
rial fabrication.

To validate the first insight, we examined the adhesion perfor-
mance of hydrogels formulated using sequences derived from DM of 
resilin proteins. These hydrogels exhibited poor underwater adhesion 
(Extended Data Fig. 2 and Supplementary Table 4), underscoring the 
importance of specific sequence features from adhesive proteins for 
effective adhesion.

To validate the second insight, we analysed the adhesion perfor-
mance of hydrogels synthesized by non-ideal copolymerization in 
dimethyl sulfide (DMS). In DMS, most pairwise reactivity ratios of 
monomers deviate significantly from unity (Supplementary Table 3), 
resulting in composition drift during polymerization and the formation 
of blocky sequences (Supplementary Figs. 6 and 7). Figure 3f compares 
two variants of G-004, showing that the variant synthesized in DMS 
appeared more translucent and exhibited markedly lower Fa than its 
counterpart with statistical sequences synthesized in DMSO. This find-
ing underscores the important role of ideal random copolymerization 
of functional monomers (with near-unity reactivity ratios) in achiev-
ing the statistical sequence features essential for mimicking protein 
functions19,27.

To improve Fa, we assessed the correlations between Fa and ϕi using 
Kendall’s τ coefficients31 and characterized the dependence of Fa 
on the swelling of hydrogels and rheological behaviours (Extended 
Data Fig. 3). We found that ϕATAC, ϕBA and ϕPEA exhibit weak positive 
correlations with Fa, whereas ϕHEA, ϕAAm and ϕCBEA show weak negative 
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correlations. Nevertheless, these weak correlations, along with the 
intricate structure–property relationships (Extended Data Fig. 3), are 
insufficient to directly predict hydrogel formulations for optimal adhe-
sion, highlighting the complex synergistic effects of monomer species, 
sequences and network structures.

Hydrogel optimization by ML
Next, we used ML to explore hydrogel formulations with enhanced 
adhesive strength, starting with the 180-hydrogel dataset. Among nine 
ML models benchmarked (Supplementary Tables 5 and 6), Gaussian 
process (GP)32 and random forest regression (RFR)33 emerged as the 
most effective base models for predicting Fa from ϕi, achieving low test 
error while minimizing overfitting (Extended Data Fig. 4).

Based on these models, we implemented sequential model-based 
optimization (SMBO)33 to propose new hydrogel formulations, taking 
expected improvement (EI) as the acquisition function. To reduce the 
number of experimental rounds of hydrogel synthesis and characteriza-
tion, we designed a batched SMBO workflow, which allows for multiple 
formulation proposals in a single round.

To enhance efficiency, we explored several batched SMBO meth-
ods, using trained base models as the hypothetical value providers 
(P) and GP, RFR, extra trees (ETR)34 and gradient boosting machine 
(GBM)35 as the EI maximizers (M), collectively denoted as P–M. We also 
implemented traditional Bayesian optimization methods, using kriging 
believer (GP_KB) (ref. 36), maximum and minimum constant liar (GP_
CLmax, GP_CLmin) (ref. 36) and local penalization (GP_LP) (refs. 36,37) 
as heuristics for determining batch points. For validation, we selected 
the top 10 formulations (out of 40 proposed per batch), sorted by either 
EI magnitude or predicted Fa (PRED) as experimental test sets.

All validation followed the same protocol as for the training set to 
ensure data consistency. Figure 4a shows the true Fa values for formula-
tions proposed by different SMBO methods (Supplementary Table 7). 

Non-SMBO baselines, GP_enu and RFR_enu, which selected the top five 
PRED from an enumeration of 10 million random formulations, failed 
to improve Fa beyond the training data. By contrast, all SMBO methods 
achieved higher Fa, with GP_KB and RFR-GP as the top performers, and 
RFR-GP yielding the highest Fa overall.

We further tested a ‘warm-start’ strategy using RFR-GP by adding 
10 additional data points generated by RFR to the training set. This 
variant, termed RFR-GP*, exhibited the highest Fa among all models. 
Furthermore, formulations chosen through PRED sorting generally 
outperformed those selected by EI sorting. These findings demonstrate 
the effectiveness of batched SMBO and suggest the optimal models 
and strategies for improving workflow efficiency.

The validation outcomes expanded our hydrogel dataset. To assess 
the exploration abilities of RFR-GP and GP_KB within the SMBO frame-
work, we conducted two additional rounds of ML optimization and 
experimental validation. Although new high-Fa formulations were 
identified, none surpassed the maximum Fa achieved in the first 
round (Extended Data Fig. 5). We suspect that the functionalities of 
the adopted monomer species may account for the observed perfor-
mance plateau, and further optimization rounds were not pursued.

The relationship between Fa and ϕi in the final dataset (containing 
341 hydrogels) is shown in Fig. 4b, using uniform manifold approxi-
mation and projection (UMAP)38 for dimensional reduction (from six 
to two dimensions). Notably, formulations generated by RFR-GP and 
GP_KB show minimal overlap with the original 180-hydrogel dataset, 
indicating extrapolation during optimization. RFR-GP data points are 
more scattered than those of GP_KB, suggesting broader exploration 
compared with traditional Bayesian optimization.

To assess the influence of ϕi on Fa, we used SHAP (SHaply Additive 
exPlanations)39 with the RFR model trained on the final 341-hydrogel 
dataset. The SHAP summary plot (Fig. 4c) shows that high values of ϕBA 
and ϕPEA significantly enhance Fa. This is because BA and PEA effectively 
expel water from the contact interface, and, when neighbouring with 
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ATAC (Supplementary Fig. 11), they could enhance electrostatic interac-
tions with the negatively charged glass surface27,40–43 (Supplementary 
Fig. 12). By contrast, high values of ϕHEA, ϕCBEA, and ϕAAm tend to reduce Fa. 
Interestingly, ϕATAC has a dual effect (Supplementary Fig. 13): low levels 
diminish electrostatic interactions, whereas excessive ϕATAC increases 
hydrogel swelling, limiting polymer-surface contact and reducing Fa. 
Therefore, a moderate ϕATAC is crucial.

These insights, consistent across all three ML rounds, establish a clear 
design principle for achieving strong underwater hydrogel adhesion to 
glass surfaces using the selected functional monomers: incorporating 
BA, PEA and ATAC is key. This combination leverages both hydrophobic 
effects and electrostatic interactions to enhance underwater adhesion 
to negatively charged surfaces. The hydrogels with the highest Fa from 
each ML round, denoted as R1-max, R2-max and R3-max, are exclu-
sively composed of these three monomers (Fig. 5a) and share similar 
statistical sequence features as indicated by Monte Carlo simulations 
(Supplementary Figs. 11 and 14).

Performance of super-adhesive hydrogels
We conducted detailed studies on the three top-performing ML-driven 
hydrogels (R1-max, R2-max and R3-max) and compared them with the 
best DM-driven hydrogel (G-max) (Fig. 5, Extended Data Fig. 6 and Sup-
plementary Table 8). In their as-prepared state, all gels were transparent 
and exhibited frequency-independent storage moduli (G′) (Extended 
Data Fig. 6a), indicating negligible inter- or intramolecular aggregation 
in DMSO. Despite compositional differences, comparable G′ values 
suggest similar network topologies.

On equilibration in normal saline, all gels underwent shrinkage 
(Extended Data Fig. 6c). In contrast to G-max, the ML-driven hydro-
gels exhibited increased opacity (Fig. 5b), stronger viscoelasticity 

and higher moduli (Extended Data Fig. 6b). This suggests that their 
higher hydrophobic BA and aromatic PEA content (Fig. 5a) promotes 
strong associations of copolymer strands in aqueous media, which 
facilitate energy dissipation. Moreover, the ML-driven hydrogels 
exhibited greater mechanical strength and toughness (Supplementary 
Video 1), as evidenced by the larger area under their stress–strain curves 
(Fig. 5c). The enhanced viscoelasticity and toughness contributed to 
their improved adhesion compared with G-max44.

To comprehensively evaluate adhesive performance, we conducted 
tack tests across a range of test conditions, substrates and solution 
media. Generally, Fa increased with increasing loading force and contact 
time, eventually reaching a plateau (Fig. 5d and Extended Data Fig. 7), 
attributed to enhanced interfacial contact and water drainage at the 
hydrogel–substrate interface. These plateau values were used to com-
pare maximum adhesion performance across substrates and solutions.

In normal saline, R1-max achieved a maximum Fa exceeding 1 MPa on 
glass (Fig. 5e) and maintained robust adhesion over 200 attachment–
detachment cycles (Extended Data Fig. 8). It also demonstrated strong 
adhesion to a variety of substrates, including inorganic materials, plas-
tics and metals, as confirmed by lap shear and peeling tests (Extended 
Data Fig. 9). Notably, R1-max sustained joints of plates made from dif-
ferent materials under a 1-kg shear load for over 1 year, showcasing 
exceptional durability (Fig. 5f and Supplementary Fig. 15).

In artificial seawater (0.7 M NaCl), all three ML-driven hydrogels 
exhibited similar levels of strong adhesion (Fig. 5g). In deionized  
water, however, R2-max outperformed the others, exhibiting cavi-
tation during debonding (Supplementary Fig. 16). These results 
indicate that small compositional variations can affect adhesion per-
formance in different environments, reflecting a principle observed in  
nature—adaptability over universal optimization—in which biologi-
cal systems evolve to perform optimally in their specific environments. 
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strength (Fa) of hydrogels fabricated based on predictions from various models 
trained on the 180-hydrogel dataset. The model nomenclature and detailed 
descriptions are provided in the Methods. All adhesion measurements were 
performed under the same test conditions as the training set: 10 N loading 
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representation of the relationship between Fa and reduced monomer 
proportions (ϕi), highlighting the formulations proposed by GP_KB and RFR-GP 
(within the SMBO framework) across different rounds. Symbol size represents 
the magnitude of adhesive strength. c, SHAP beeswarm plot, ranked by mean 
absolute SHAP values, showing the influence of ϕi on Fa within the final dataset 
of 341 samples as analysed by the trained RFR model.
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This finding underscores the importance of ensuring data consistency 
in ML optimizations, as hydrogel performance varies with environ-
mental conditions.

To demonstrate practical applicability, several case studies were 
conducted. R1-max was used to affix a rubber duck to a seaside rock 
(Extended Data Fig. 10a). Its strong adhesion in saltwater enabled the 
duck to withstand continuous ocean tides and wave impacts, reveal-
ing its suitability for harsh marine environments (Supplementary 
Video 2). R2-max, exhibiting the highest adhesion in deionized water 
(Fig. 5g), successfully sealed a 20-mm-diameter hole at the base of 
a 3-m-tall polycarbonate pipe filled with tap water (Extended Data 
Fig. 10b). It instantly stopped the high-pressure water leak (Supple-
mentary Video 3), showcasing a level of performance that common 
adhesives cannot match (Extended Data Fig. 10c). Furthermore, all 
these hydrogels demonstrated good biocompatibility, as confirmed 

by subcutaneous implantation in mice (Supplementary Fig. 17), sup-
porting their potential for biomedical applications.

In summary, we introduced a data-driven approach that integrates 
the extraction of valuable sequence information from proteins, scalable 
polymer synthesis and iterative ML to address longstanding challenges 
in the de novo design and development of soft materials. Beyond adhe-
sive hydrogels, this data-driven design framework offers a systematic, 
scalable end-to-end approach for developing a wide range of func-
tional soft materials. However, challenges remain, primarily because 
of limitations in monomer diversity, polymer synthesis technologies 
for controlling monomer sequences to a scale suitable for materials 
development and dataset scalability. Overcoming these challenges will 
require expanding modular monomer libraries, advancing polymeriza-
tion techniques and developing physics-informed ML models that can 
generalize across sparse, multiscale datasets.
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Fig. 5 | Characterization and performance of hydrogels identified  
by DM (G-max) and ML optimization (R1-max, R2-max and R3-max).  
a, Formulations of the gels. b, Photographic images showing the appearance  
of the gels. c, Uniaxial tensile stress–strain curves of the gels at a stretch rate of 
100 mm min−1. d, Fa of hydrogels as a function of contact time (left) and contact 
force (right) on glass in normal saline. e, Fa of R1-max on various substrates  
in normal saline. PC, polycarbonate; PMMA, poly(methyl methacrylate);  
PF, phenol formaldehyde; POM, polyoxymethylene; PP, polypropylene;  

PTFE, polytetrafluoroethylene; Al, aluminium alloy; Ti, titanium alloy; SS, 
stainless steel. f, Photographic image showing R1-max (25 mm × 25 mm in size, 
about 0.4 mm thickness) joining pairs of ceramics (left), glass (middle) and 
titanium (right) plates under a 1-kg load in normal saline for over 1 year. g, Fa on 
glass substrate in deionized water, normal saline and artificial seawater (0.7 M 
NaCl) for hydrogels equilibrated in the corresponding solutions. The asterisk 
on G-max indicates cohesive failure during testing. Error bars represent the 
standard deviation of N = 3 measurements.
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Methods

Hydrogel fabrication
All copolymer gels were synthesized by one-step free-radical copolym-
erization of monomers with a chemical crosslinker. The crosslinker con-
centration was fixed at 0.1 mol% relative to the total monomer content 
to balance the elasticity and deformability of the gels27. DMSO solutions 
containing functional monomers (total concentration of 2.4 M) with 
compositions derived from DM and ML (Supplementary Tables 2 and 7),  
chemical crosslinker (glycerol 1,3-diglycerolate diacrylate, 2.4 mM), 
and UV initiator (2-oxoglutaric acid, 6 mM) were used. For example, to 
prepare the G-max gel, 1.819 g of BA, 0.413 g of HEA, 0.264 g of CBEA, 
0.561 g of ATAC, 0.441 g of PEA, 8.4 mg of glycerol 1,3-diglycerolate 
diacrylate and 8.8 mg of 2-oxoglutaric acid were added to a 10 ml volu-
metric flask, followed by DMSO to reach 10 ml. The precursor solution 
was transferred to a glove box to remove oxygen, poured into a reac-
tion cell (two 10 cm × 10 cm glass plates, 0.5-mm spacing) and irradi-
ated with UV light (365 nm wavelength, 4 mW cm−2 intensity) for 8 h to 
form gels (Supplementary Fig. 9a). After UV irradiation, over 99% of 
the monomers were converted into polymers, as confirmed by NMR 
(Supplementary Fig. 9b).

The as-prepared organogels were then immersed in normal saline 
(0.154 M NaCl) to remove solvent and residual chemicals, with the saline 
exchanged every 12 h for at least 2 weeks until swelling equilibrium was 
reached. Hydrogels were stored in normal saline before use.

Underwater adhesion characterization
The tack test was conducted using a SHIMADZU tester (Autograph 
AG-X) equipped with Trapezium X software. Hydrogel (0.3–0.8 mm 
thickness) at swelling equilibrium was adhered to the probe using 
cyanoacrylate adhesive (super glue). For rapid screening, DM-driven 
hydrogels from the training round and ML-driven hydrogels from three 
optimization rounds, were prepared as 15 mm diameter samples. For 
detailed adhesion studies, 10 mm diameter samples were used to avoid 
exceeding the force range of the instrument. This change in diameter 
did not affect the adhesive strength results. The hydrogel on the probe 
was then immersed in a test solution (for example, normal saline) for 
5 min to reach equilibrium. The probe descended towards the substrate 
at 1 mm min−1 until a loading force of 10 N was applied, maintained for 
10 s and withdrawn at 10 mm min−1 (Supplementary Fig. 10). These 
test conditions were used as a standard protocol unless otherwise 
specified. For repeated adhesion tests, hydrogels rested underwater 
for 5 min between cycles, with glass substrates replaced every 100 
tests. For prolonged attachment–detachment cycles (Extended Data 
Fig. 8), a 5 N loading force and a 10 s contact time were used to minimize 
gel fatigue. Each sample was tested at least three times. For hydrogel 
dataset construction, the highest adhesive strength recorded for each 
sample was reported as Fa, representing maximum adhesion perfor-
mance under the specific conditions.

Lap shear adhesive strength was measured using a universal testing 
machine (UTM, INSTRON 5965). A hydrogel (10 mm diameter, area 
A = 78.5 mm2) at swelling equilibrium was sandwiched between two 
glass slides, pressed at 20 N for 1 min in normal saline. Shear loading 
was applied at 50 mm min−1. Shear adhesive strength (Fa) was calculated 
as Fa = Fmax/A, where Fmax is the maximum loading force. For adhesion 
durability tests (Supplementary Fig. 15), the sandwiched assembly was 
stored in normal saline for varying durations before testing.

Interfacial toughness was measured by 180° peeling tests using 
INSTRON 5965. Hydrogel strips (10 mm × 150 mm) were adhered to a 
glass substrate in normal saline using mild finger pressure, followed by 
a 2 kg hand roller applied in each direction for 1 min to ensure uniform 
contact. Polyethylene terephthalate (PET) films (50 μm thickness) 
served as a stiff backing. Peeling tests were conducted at 50 mm min−1. 
Interfacial toughness (Gc) was calculated as Gc = 2Fc/w, where Fc is the 
plateau force and w is the sample width (10 mm).

DM of adhesive proteins
A comprehensive dataset of adhesive proteins was compiled from the 
NCBI protein database, using ‘adhesive proteins’ as the query keyword. 
A total of 24,707 protein sequences from 3,822 different organisms 
(bacteria, viruses, eukaryotes and animals) were collected without 
additional data cleaning. Based on taxonomy annotations, proteins 
were grouped by species, and a consensus sequence was generated 
for each species to capture common sequence patterns and reduce 
the influence of individual variations.

The dataset included 3,111 species, noting that taxonomic overlap 
results in protein counts not summing to 24,707. For robust analysis, 
the top 200 species, ranked by the number of distinct proteins identi-
fied per species, were selected for further study.

Protein sequences were exported in FASTA format45 using the Bio.
SeqIO interface in BioPython46. Consensus sequences were computed 
with Clustal Omega23, which performs multiple sequence alignment 
by generating a distance matrix from pairwise alignments, construct-
ing a guide tree based on evolutionary relationships and progres-
sively aligning sequences from the closest to the most distant. The 
resulting alignment identifies the most frequent residues at each 
position, yielding a consensus sequence that highlights conserved  
regions.

Clustal Omega was executed with the command:

./clustalo i “input_file” outfmt=clu o “output_aln_file” v‐ ‐‐ ‐ ‐

where “input_file” and “output_aln_file” denote the input protein seq
uences and output consensus sequences, respectively. The 200 consen-
sus sequences generated were used for subsequent sequence analysis 
and hydrogel formulation design.

ML methods
A six-dimensional feature vector, ϕi = [ϕBA, ϕHEA, ϕCBEA, ϕATAC, ϕAAm, ϕPEA], 
was used to represent monomer proportions in hydrogels. The target 
variable was adhesive strength, Fa. To model the relationship between 
ϕi and Fa, we explored both linear and non-linear ML models (Supple-
mentary Tables 5 and 6).

Linear models included least absolute shrinkage and selection opera-
tor regression (Lasso) and ridge regression (Ridge). Non-linear models 
comprised k-nearest neighbours (KNN), kernel ridge regression (KRR), 
support vector regression (SVR), random forest regression (RFR), 
gradient boosting regression with XGBoost (XGB), extra trees regres-
sion (ETR) and Gaussian process (GP) with a Matérn kernel32,34. These 
non-linear models encompass non-parametric (KNN), kernel-based 
(KRR, SVR and GP) and tree-ensemble (RFR, XGB and ETR) approaches, 
enabling a comprehensive comparison34,35,47.

XGB was of v.1.6.2, whereas the other models were implemented using 
Scikit-learn (v.1.0.2) and Scikit-optimize (v.0.9.0). The hyperparameter 
n_estimators was tuned using Optuna48, whereas others were optimized 
using grid search (Supplementary Table 6). A 10-fold cross-validation 
strategy was used to assess predictive performance on our dataset of 
180 hydrogels, using root mean squared error (RMSE) as the metric. GP 
and RFR, with the lowest RMSE in training-test error using a 90%/10% 
train/test split (Extended Data Fig. 4), emerged as the top performer 
and runner-up, respectively, and were subsequently used as the base 
(surrogate) models.

To make extrapolative predictions, we tried three types of methods.
1.	 Exploitation-only enumeration:

•	GP_enu: random sampling in the input space using the fitted GP 
model.

•	RFR_enu: random sampling in the input space using the fitted RFR 
model.

•	Ten million ϕi vectors were generated from a uniform distribution 
[0, 1.0) for each monomer, normalized to sum to 1.0. The top five 

https://www.ncbi.nlm.nih.gov/protein/


vectors, ranked by predicted Fa from each model, were experimen-
tally validated.

2.	Batched BO:
•	 GP_KB: used GP predictions as the hypothetical values for selecting 

the next data points maximizing EI.
•	 GP_CLmax: used the maximum Fa (y_max) from the training set 

as a hypothetical value for selecting the next data points with EI 
maximums.

•	 GP_CLmin: used the minimum Fa (y_min) for selecting the next data 
points with EI maximums.

•	 GP_LP: incorporated a locally penalized term in EI calculation37.
•	 GP_KB, GP_CLmax and GP_CLmin simplified the joint q-EI prob-

ability calculation36 by using the GP prediction value as a hypo
thetical value for selecting the next data points with EI maximums. 
A batch size of q = 10 was selected.

3.	Batched sequential model-based optimization (SMBO):
•	 GP-RFR: GP as the hypothetical value provider and RFR as the EI 

maximizer.
•	 RFR-RFR: RFR as both the hypothetical value provider and the EI 

maximizer.
•	 RFR-GP: RFR as the hypothetical value provider and GP as the EI 

maximizer.
•	 RFR-GP*: RFR-GP with a warm start, 10 RFR-generated points were 

added to the real dataset for GP regression.
•	 RFR-ETR: RFR as the hypothetical value provider and ETR as the 

EI maximizer.
•	 RFR-GBM: RFR as the hypothetical value provider and GBM as the 

EI maximizer.
•	 SMBO iteratively updates the surrogate model while exploring 

promising data points33. GP and RFR, when used as the hypotheti-
cal value providers, balance exploitation and exploration, whereas 
GP_CLmax and GP_CLmin emphasize exploitation and exploration, 
respectively49.

SMBO (Supplementary Algorithm 1) consists of four components: 
the true function ( f ), global domain (X), acquisition function (S) and 
surrogate model (M). Initial training data (D) are sampled from X, and 
experimental Fa values are obtained (line 1). The surrogate model M 
is fitted to D (line 3) and S (EI) identifies the next data point based on 
predictive uncertainty (line 4). This data point is subsequently validated 
experimentally (line 5), updating D (line 6) for T iterations (line 2).

EI quantifies expected improvement, ∫ y y p y y
*

( − *) ( )d
y

∞
, over the 

current best target (y*). Owing to the time-intensive nature of hydrogel 
fabrication (each takes about 2 weeks), GP and RFR were used as the 
hypothetical value providers, enabling the maximization of the joint 
q-EI probability without requiring new experiments per iteration.  
EI maximizers (GP, RFR, ETR and GBM) used hyperparameters from 
Scikit-optimize (v.0.9.0).

For GP as the EI maximizer, the limited-memory Broyden–Fletcher–
Goldfarb–Shannon (L-BFGS-B) algorithm50 was executed 20 times per 
iteration (40 iterations total) to identify the point with the highest EI, 
updating the GP prior. For the other three EI maximizers (RFR, ETR 
and GBM), 10,000 points were randomly sampled per iteration, as 
numerical optimization is more suitable for tree-ensemble models 
lacking gradient information. SMBO ran for 40 iterations with each EI 
maximizer, selecting two sets of 10 data points in each iteration: the 
top 10 ranked by EI values (batch size q = 10), and the top 10 ranked by 

predicted Fa values for experimental validation. These two sets may 
overlap, and the total number of data points may be less than 20.

For BO methods (GP_KB, GP_CLmax, GP_CLmin and GP_LP), the proce-
dure was similar, except that the hypothetical value provider was either 
GP itself (GP_KB and GP_LP) or constant values (y_max for GP_CLmax 
and y_min for GP_CLmin).

After the first round, 109 validated points expanded the dataset to 
289 hydrogels. The second and third rounds added 27 and 25 points, 
respectively, resulting in a final dataset comprising 341 hydrogels.

Data availability
All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Information. The data that sup-
port the findings of this study are available online at GitHub (https://
github.com/sheng-hu/hydrogels).

Code availability
ML algorithms and Python codes that support the findings of this 
study are available online at GitHub (https://github.com/sheng-hu/
hydrogels).
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Extended Data Fig. 1 | Sequence analysis of Enterobacteriaceae adhesive proteins. (a) Consensus sequence fragment. (b) Pairwise functional class counts 
within the consensus sequence fragment. Complete data for the top 200 species are provided in Supplementary Data 1 and Supplementary Data 2.



Extended Data Fig. 2 | Data mining-driven hydrogels based on the resilin 
protein database. (a) Pairwise frequency distribution of 21 functional class 
pair types in encoded consensus sequences for adhesive and resilin proteins 
from data mining (DM). The resilin dataset comprises 2,537 proteins sourced 
from the NCBI protein database using the keyword “resilin.” (b) Average 
monomer proportions in formulations derived from adhesive and resilin 
protein databases. (c) Adhesive strength (Fa) of DM-driven hydrogels derived 
from the resilin protein database. Asterisks indicate significant gel shrinkage 

during solvent exchange, making adhesion testing unfeasible for these 
samples. Detailed formulations are included in Supplementary Table 7. 
Adhesion tests were performed on a glass substrate in normal saline using a 
tack test with a 10 N loading force and a 10-s contact time, consistent with 
conditions used for DM-driven hydrogels derived from adhesive proteins. 
Error bars represent the standard deviation of N = 3 measurements.  
(d) Comparison of average Fa between DM-driven hydrogels derived from 
adhesive and resilin protein databases.
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Extended Data Fig. 3 | Analysis of correlations between adhesive strength 
(Fa) and properties of 180 bioinspired hydrogels. (a) Correlation between 
monomer proportions (ϕi) and Fa, captured by Kendall’s τ coefficients. These 
coefficients reveal that ϕBA, ϕATAC, and ϕPEA have weak positive correlations 
with Fa, while ϕHEA, ϕAAm, and ϕCBEA show weak negative correlations.  
(b) Example illustrating the complex interplay between ϕi and Fa, due to the 
synergistic effects of different monomers. Comparing G-074 to G-001, ϕBA is 
roughly the same, ϕHEA and ϕCBEA increase, and ϕATAC decreases. Despite 
Kendall’s τ coefficients suggesting that the Fa of G-074 should be lower than 
that of G-001, the actual Fa of G-074 is about five times higher. (c) Angular 
frequency dependence of the storage modulus (G′) and loss modulus (G″) of 
the G-042 hydrogel as an example. The slope (k) of G′ is calculated from the line 

connecting G′ values at frequencies of 0.1 and 100 rad s−1. A larger slope indicates 
greater viscoelasticity of the hydrogel. (d) Fa as a function of network properties 
for the 180 bioinspired hydrogels. Q, G′, Tan δ = G″/G′, and k represent the 
volume swelling ratio, storage modulus at a frequency of 100 rad s−1, loss factor 
at a frequency of 100 rad s−1, and the slope of the G′ curve, respectively. These 
results suggest that hydrogels with shrinking behavior (Q < 1), moderate G′, 
high Tan δ, and moderate k tend to exhibit higher Fa values. All characterizations 
were performed on gels equilibrated in normal saline (0.154 M NaCl). Adhesion 
tests were conducted using a tack test with a 10 N loading force and a 10-s 
contact time on a glass substrate to enable rapid screening and ensure 
consistent comparisons across the dataset.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Machine learning (ML) trained models. (a) Error plots 
for nine ML models using a 90%/10% training-test split. Training data points are 
represented by blue dots, while test data points are shown in red. The dashed 
line indicates where the predicted values match the experimental data (truth). 
(b) Root mean squared errors (RMSEs) depicting the prediction accuracy 

across the nine ML models trained on the dataset of 180 bioinspired hydrogels, 
assessed via 10-fold cross-validation. A lower test error, combined with 
minimized overfitting (i.e., a smaller gap between training and test errors), 
indicates a more effective regression model.



Extended Data Fig. 5 | Machine learning-driven optimization and 
experimental validation in three consecutive rounds. (a) Adhesive strength 
(Fa) of hydrogels fabricated in experiments according to the formulations 
proposed by GP_KB and RFR-GP models. (b) Variations in performance metrics, 
including: (i) successful rate (SR), defined as the fraction of the test set with 
higher true Fa than the training set; (ii) ratio of maximum true Fa between the 
test and training sets; and (iii) root mean squared errors (RMSEs) of the test 

sets. The success rate and Fa ratio decrease from the first round to the second 
round and level off in the third round, implying convergence toward the global 
optimum via SMBO. Meanwhile, the RMSE decreases continuously over the 
three rounds, indicating that expanding the training dataset improves the 
accuracy of regression models. (c) Parity plots comparing ML predicted Fa 
versus true Fa.
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Extended Data Fig. 6 | Properties of top-performing hydrogels from 
machine learning and data mining approaches. (a) Angular frequency 
dependence of storage modulus (G′) and loss modulus (G″) for the top- 
performing machine learning-driven gels (R1-max, R2-max, R3-max) and the 
top-performing data mining-driven gel (G-max) in DMSO. (b) Angular frequency 
dependence of G′ and G″ for the four hydrogels equilibrated in normal saline 
(0.154 M NaCl). (c) Volume swelling ratio (Q) of the four hydrogels equilibrated 

in normal saline relative to their as-prepared state in DMSO. (d) Pure shear 
stress-stretch ratio curves for the R1-max hydrogel (equilibrated in normal 
saline) with and without a notch, measured at a stretch rate of 100 mm min−1. 
The notched sample exhibited crack propagation at a critical stretch ratio (λc) 
of 3.4. The fracture energy (Γ) estimated from the pure-shear test is shown. 
Experimental details are provided in the Supplementary Materials. Error bars 
represent the standard deviation of N = 3 measurements.



Extended Data Fig. 7 | Adhesive strength (Fa) of hydrogels under different 
tack test conditions. (a, b) Force-displacement curves of G-max hydrogel:  
(a) at a fixed loading force of 10 N with varying contact times, and (b) at a fixed 
contact time of 60 s with varying loading forces. (c, d) Force-displacement 
curves of R1-max hydrogel: (c) at a fixed loading force of 10 N with varying 

contact times, and (d) at a fixed contact time of 60 s with varying loading 
forces. (e) Fa of the 10 samples that exhibited high adhesions in Fig. 3e 
measured at different loading force and contact time. All adhesion tests were 
conducted in normal saline on glass substrates. Error bars represent the 
standard deviation of N = 3 measurements.
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Extended Data Fig. 8 | Repeated adhesion of the R1-max hydrogel. Adhesion 
stability of the R1-max hydrogel (10 mm diameter, ~0.4 mm thickness) over 200 
attachment-detachment cycles on a glass substrate in normal saline. Testing 
was conducted under a 5 N loading force and a 10-s contact time.



Extended Data Fig. 9 | Adhesion performance of the R1-max hydrogel on 
various substrates. (a) Schematic illustration of lap shear and 180° peeling 
tests for adhesion assessment. (b) Force-displacement curves from lap shear 
tests of R1-max (10 mm diameter, ~0.4 mm thickness) adhering to glass, PET, 
and PC substrates. (c) Force-displacement curves from 180° peeling tests of 
R1-max (10 mm × 150 mm strips, ~0.4 mm thickness) adhering to glass, PET,  
PC, and pork bone surfaces. (d) Lap shear adhesive strength and 180° peeling 

interfacial toughness of R1-max on various substrates. (e) Photographic images 
(from different perspective angles) showing R1-max (25 mm × 150 mm strips, 
~0.4 mm thickness) being peeled away from a pork bone surface. All hydrogels 
were equilibrated in normal saline before testing. Error bars represent the 
standard deviation of N = 3 measurements. Experimental details are provided 
in the Methods section. These results highlight the exceptional adhesion 
performance of R1-max on various surfaces.
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Extended Data Fig. 10 | Demonstration of data-driven hydrogels in 
practical applications. (a) Photographic images of R1-max adhering a rubber 
duck to a seaside rock, withstanding ocean tides. (b) Photographic images of 
R2-max (6 cm × 6 cm in size, ~0.37 mm thickness) sealing a 20-mm-diameter 
hole at the base of a 3-meter-tall PC pipe to halt high-pressure water leakage 
(burst flow rate at the outlet of the hole was ~5.4 m s−1). (c) Photographic images 
show (i) R2-max successfully repairing a 20 mm hole at the base of a 3-meter-tall 

polycarbonate pipe filled with tap water; (ii) no water leakage was observed for 
over 5 months in air, with the gel becoming transparent upon drying, and the 
opaque region indicating water penetration only around the hole; (iii) in 
contrast, commercial FLEX TAPE® failed under the same conditions, with water 
leakage occurring within 1.5 h. These findings highlight the exceptional wet 
adhesion performance of the R2-max hydrogel.
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