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A Machine Learning Study on High Thermal Conductivity
Assisted to Discover Chalcogenides with Balanced Infrared
Nonlinear Optical Performance

Qingchen Wu, Lei Kang,* and Zheshuai Lin*

Exploration of novel nonlinear optical (NLO) chalcogenides with high
laser-induced damage thresholds (LIDT) is critical for mid-infrared (mid-IR)
solid-state laser applications. High lattice thermal conductivity (𝜿L) is crucial
to increasing LIDT yet often neglected in the search for NLO crystals due to
lack of accurate 𝜿L data. A machine learning (ML) approach to predict 𝜿L for
over 6000 chalcogenides is hereby proposed. Combining ML-generated 𝜿L

data and first-principles calculation, a high-throughput screening route is
initiated, and ten new potential mid-IR NLO chalcogenides with optimal
bandgap, NLO coefficients, and thermal conductivity are discovered, in which
Li2SiS3 and AlZnGaS4 are highlighted. Big-data analysis on structural
chemistry proves that the chalcogenides having dense and simple lattice
structures with low anisotropy, light atoms, and strong covalent bonds are
likely to possess higher 𝜿L. The four-coordinated motifs in which central
cations show the bond valence sum of +2 to +3 and are from IIIA, IVA, VA,
and IIB groups, such as those in diamond-like defect-chalcopyrite
chalcogenides, are preferred to fulfill the desired structural chemistry
conditions for balanced NLO and thermal properties. This work provides not
only an efficient strategy but also interpretable research directions in the
search for NLO crystals with high thermal conductivity.

1. Introduction

Mid-infrared (mid-IR) nonlinear optical (NLO) crystals play an
essential role in laser frequency conversion, which has extensive
utilities in various fields such as remote communications, envi-
ronmental monitors, and medical diagnosis.[1] To date, chalco-
genides have been considered as one of the most studied and
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preferred material families for mid-IR NLO
applications due to their wide transmission
ranges and strong second harmonic gen-
eration (SHG) effects, among which the
benchmark AgGaS2 (AGS) and AgGaSe2
(AGSe) are the most widely used commer-
cial mid-IR NLO crystals.[1c,2] However, they
both suffer from low laser-induced damage
thresholds (LIDTs), which hinders their ap-
plications involving high-power laser. The
achievement of high LIDT has become an
important issue in the exploration of novel
mid-IR NLO materials.[3]

Intrinsically, the LIDT for a perfect crys-
tal (irrespective to the presence of impuri-
ties and defects) can be increased by en-
larging the energy bandgap Eg, as it can
effectively suppress the occurrence of two-
or multi-photon absorption which is usu-
ally a major cause of crystal damage un-
der laser.[4] However, Eg is not the only
factor that affects LIDT. In principle, the
laser can also induce damage to a crystal
from thermal effects, which are closely re-
lated to local laser-induced heating and heat
transfer to surrounding media.[5] Thus,

high thermal conductivity is advantageous for achieving good
heat dissipation performance and consequently large LIDT.
Moreover, increasing the thermal conductivity helps to overcome
the problem of thermal lens effects[6] at high-power pumping
that occurs in, e.g., AGS.[7] Overall, high thermal conductivity is
of great practical value in the field of mid-IR NLO crystals and
is receiving increasing interest as one of the key performance
metrics.[8]

Apart from high thermal conductivity, a good mid-IR NLO
chalcogenide needs to simultaneously satisfy several stringent
conditions for optical performance, including[1b–f,9] i) a large
SHG coefficient dij of at least >10× KDP (KH2PO4, d36 = 0.39
pm V−1), and preferably >1× AGS (AgGaS2, d36 = 13.40 pm
V−1); ii) a wide bandgap Eg of preferably >3.00 eV; and iii) a
moderate birefringence Δn of 0.03–0.10 to achieve the phase-
matching condition (Figure 1a). It is a great challenge to bal-
ance all the required properties in the discovery of good mid-
IR NLO chalcogenides, as these requirements are often contra-
dictory. For example, increasing the bandgap would result in
a reduction of the SHG coefficient.[10] A powerful method for
balancing multiple properties is high-throughput screening and
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Figure 1. a) Illustration of the strategy to discover novel mid-IR NLO materials with the most balanced properties. Traditionally, Eg, dij, and Δn are the
three major aspects that need to be balanced in the search for NLO materials. In this study, we add 𝜅L as another primary criterion. b) The high-throughput
screening procedure for the discovery of balanced mid-IR NLO chalcogenides.

preexperimental design. However, although the energy bandgap
Eg, SHG coefficient dij, and birefringence Δn can be accurately
determined by first-principles calculations[1c] at relatively low cost
and have been widely investigated in high-throughput searches
for new NLO crystals,[1a,11] the thermal conductivity is often miss-
ing in such studies owing to the limited availability of data, de-
spite its crucial role in improving LIDT.

For mid-IR NLO crystals with Eg of several eVs, their total
thermal conductivities are dominated by the lattice thermal con-
ductivity (𝜅L). Experimental measurements of 𝜅L need to be per-
formed on large-sized crystals which are usually unavailable in
the preliminary design and discovery of new materials, while ac-
curate first-principles calculations on 𝜅L by solving Boltzmann’s
transport equation require too tremendous computational re-
sources for high-throughput investigations. Another solution is
to compute 𝜅L through semiempirical models, which can save
a lot of time and resources. For example, a high-throughput 𝜅L
database, the TE Design Lab,[12] was obtained using semiempiri-

cal methods based on a simplified Debye–Callaway model. A re-
cent study by Chu et al.[13] used thermal conductivities calculated
by the semiempirical Slack model[14] to screen IR NLO materials
with high 𝜅L. Nevertheless, semiempirical methods still need to
obtain certain results either from experimental measurements
or from first-principles calculations such as elastic modulus or
velocity of sound, and often suffer from limited accuracy. For in-
stantaneous and high-throughput study of 𝜅L with a small cost,
machine learning (ML) provides another effective path by adopt-
ing a well-trained algorithm to learn from existing 𝜅L data and
then predict the 𝜅L directly from material structures.

ML is playing an increasingly important role in high-
throughput screening of functional materials in many areas,[15]

including the field of NLO materials for the determinations
of optical properties.[16] Till now, although ML has shown ini-
tial success in large-scale prediction and screening of ther-
mal properties,[17] most of the 𝜅L prediction models focus on
the thermoelectric materials area[18] which favors lower 𝜅L of
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<1.0 W m−1 K−1, contrary to the requirements of NLO crys-
tals, and thus tend to underperform in NLO systems. For in-
stance, in 2021, aiming at identifying new thermoelectric materi-
als, Zhu et al.[17b] established several ML models to predict 𝜅L of
over 90 000 synthesized structures, but their predicted 𝜅L values
for typical mid-IR NLO crystals exhibit relatively large deviations
from experimental measurements, especially with the predicted
𝜅L values of AGS and AGSe being over 4 W m−1 K−1 (given that
the experimental values are 1.4 and 1.1 W m−1 K−1 for AGS and
AGSe, respectively).[19] Therefore, obtaining a large 𝜅L dataset
with satisfactory efficiency and accuracy simultaneously is a main
bottleneck in ML discovery of good mid-IR NLO chalcogenides.

In this work, we build a ML model to predict 𝜅L for 6046
non-centrosymmetric (NCS) chalcogenides from the Materials
Project (MP) database.[20] Combined with the ML study, a high-
throughput screening procedure is performed to search for po-
tential NLO chalcogenides with high thermal conductivity, ther-
modynamically stable structure, and suitable bandgap. After that,
the first-principles NLO calculations are performed to evaluate
the optical properties for the screen candidates. The structure-
property relationship in 𝜅L is analyzed, and certain structural fea-
tures are pointed out to achieve a proper balance in thermal and
NLO properties. Accordingly, two chalcogenides, i.e., Li2SiS3 and
AlGaZnS4, are identified as the most promising crystals with bal-
anced mid-IR NLO performance, of which the optical properties
are reported for the first time. Our work provides not only an ef-
ficient strategy but also interpretable research directions in the
discovery of crystals with balanced mid-IR NLO performance in-
cluding high thermal conductivity.

2. Results and Discussion

2.1. High-Throughput Screening Pipeline

A high-throughput screening pipeline is launched to find poten-
tial mid-IR NLO materials in the popular chalcogenide family.
In all, there are 15 393 chalcogenides from the MP database,
in which 6046 are NCS excluding some systems with signifi-
cant differences in properties compared with ordinary chalco-
genides, such as hydro-chalcogenides, chalcogen-nitrides, and
carbon-chalcogenides. To discover new mid-IR NLO crystals with
most balanced properties from these candidates, we design a
screening procedure by successively taking 𝜅L, Eg, dij, and Δn
into consideration in the order of their importance, as described
in Figure 1b. 𝜅L is relevant to the actual durability under laser
and causes the major bottleneck in existing materials, so that it
becomes our first concern and the primary criterion in this work.
Eg and dij are vital indexes of NLO performances in evaluating a
new NLO material and come secondly.Δn that determines phase-
matching properties comes last since it can be compensated by
techniques like quasi-phase-matching.[21]

2.2. Machine Learning Prediction of 𝜿L

We start by training a ML model to predict 𝜅L of 6046 material
candidates. To retrieve data for the model to learn from, 2410 𝜅L
values under 300 K are obtained, including 2243 calculated 𝜅L

(𝜅L
cal) and 167 experimental 𝜅L (𝜅L

exp), from the MP database. To
achieve our goal in training the ML model to effectively predict
the actual 𝜅L in materials, a dilemma between the size and preci-
sion of the training dataset must be solved. On the one hand, the
scale of existed 𝜅L

exp database is small. A ML model trained on
such small datasets often suffers from overfitting, which limits
its generalization ability (i.e., the predictive ability for unreported
materials). On the other hand, the database for 𝜅L

cal is vast but has
inherent inaccuracy compared with experimentally data as they
depend on computational methods, thus the ceiling for accuracy
of a ML model training on the 𝜅L

cal set is even lower than in the
calculated dataset itself.

Adopting the advantage of both databases while overcoming
their weak points, an efficient and verified method in 𝜅L predic-
tion is to implement the transfer learning (TL)[17b,22] technique
into a state-of-the-art ML algorithm, e.g., the crystal graph con-
volutional neural network, or crystal graph convolutional neural
network (CGCNN).[23] An advantage of the CGCNN algorithm
is that it only requires the input of structured CIF documents,
which can be directly obtained from online databases. By utilizing
the TL-CGCNN technique, both 𝜅L

cal and 𝜅L
exp datasets can be si-

multaneously used to reach credible 𝜅L estimation (see the Exper-
imental Section). First, a CGCNN model (with five convolutional
layers and one following fully connected layer) is trained on the
dataset with 2243 𝜅L

cal values. The result for log10𝜅L
cal prediction

can be considered accurate with the mean average error (MAE)
of 0.15 and the coefficient of determination R2 of 0.80 on the test
set (Figure 2a), which means the predicted 𝜅L is 0.7–1.4 times of
the calculated values in average. However, when extended to fit
the 167 𝜅L

exp values, the CGCNN model shows a large error with
the MAE and R2 for log10𝜅L

exp prediction equal to 0.42 and 0.55,
respectively (Figure 2b). Since the CGCNN model is trained to
predict 𝜅L

cal, which has inherent error compared to 𝜅L
exp,[12] it is

not surprising for this model to show an increased error in 𝜅L
exp

prediction. When the TL technique is incorporated, layers from
this model are transferred to another CGCNN model with an ad-
ditional new fully connected layer which is further trained and
optimized on the 𝜅L

exp dataset. By adopting this TL-CGCNN tech-
nique, the MAE of 0.25 and R2 of 0.86 for log10𝜅L

exp prediction are
achieved for the 𝜅L

exp training dataset (Figure 2c). This means
that the 𝜅L

ML-TL obtained from this model is 0.56–1.78 times of
actual 𝜅L

exp in average, displaying significant improvement from
the original CGCNN method. Note that the accuracy of our 𝜅L
prediction by TL-CGCNN model is improved to the same level
with the semiempirical computational approach, but with much
lower requisition for computing power and no requisition of ex-
perimental values. In particular, the predicted 𝜅L

ML-TL values for
AGS and AGSe are 2.27 and 1.07 W m−1 K−1, respectively, which
match well with the experimental values and have better quality
than those predicted in previous ML study[17b] (see Table S1, Sup-
porting Information). Clearly, the thermal conductivity 𝜅L

ML-TL

shows good consistency with available experimental values.

2.3. Structural Chemistry for High 𝜿L from ML Model

Using our TL-CGCNN model, the high-precision datasets of pre-
dicted 𝜅L

ML-TL can be generated in large scale. The predicted
𝜅L

ML-TL data for 6046 NCS chalcogenides in the MP database are
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Figure 2. a) Test results of CGCNN trained on 𝜅L
cal set. b) 𝜅L

ML-cal predicted by CGCNN trained on 𝜅L
cal set compared with 𝜅L

exp. c) 𝜅L
ML-TL predicted

by TL-CGCNN trained on 𝜅L
exp set. The green shadow area denotes the test error smaller than MAE. Clearly, the prediction accuracy on 𝜅L is greatly

improved after TL is applied.

listed in Table S2 (Supporting Information). We use AGS as a
benchmark for further 𝜅L

ML-TL screening. Accordingly, 𝜅L
ML-TL >

2.27 W m−1 K−1 is chosen to figure out the materials with possibly
higher thermal conductivity than AGS, from which 2946 materi-
als are screened out.

Intrinsically, our ML method is based on graph neural net-
work with structural CIF documents as the only input informa-
tion and thus has the “black box” characteristics, meaning that
the underlying mechanism cannot be directly interpreted from
the model itself. However, the big data generated by our predic-
tive ML model can reflect the trends in 𝜅L and help to investigate
the structure–property relationship by linking with certain micro-
scopic structural descriptors. Here, we choose several fundamen-
tal physical parameters to be the descriptors from two consider-
ations: i) they are relevant to 𝜅L in previous literatures,[12a,17b,c,24]

and ii) they can be obtained directly from the CIF documents and
contain basic structural and elemental information of the mate-
rial without further first-principles calculations. These descrip-
tors include the average atomic mass of cations (mA), maximum
atomic mass difference of cations (ΔmA), largest electronegativity
difference (Δ𝜒A), average cell volume per atom (VA), bond length
(lB), maximum distance difference of neighboring atoms (ΔDn),
bond valence sum (BVS) of cations, and Voronoi coordination
number (VCN) of cations. The consideration for such choices is
not only from the general lattice and elemental properties of a
material (mA, ΔmA, and lB), but also from the coordination en-
vironment of cations (VCN and BVS), bond polarity (Δ𝜒A), and
lattice anisotropy (ΔmA and ΔDn). The dependence of 𝜅L

ML-TL on
these descriptors is displayed in Figure 3.

From the viewpoint of phonon transportation, 𝜅L is mainly de-
termined by the interactions among the phonons via anharmonic

Umklapp processes and can be expressed as 𝜅L = A ⋅
M̄v3

m

𝛾2V
2
3 TN

1
3

,

where A is a collection of physical constants, M̄ is the average
mass of the atoms in the crystal, V is the volume per atom, vm
is the mean speed of sound which has negative correlation with
M̄, N is the number of atoms in the primitive cell, and 𝛾 is the

high temperature limit of the Grüneisen parameter which char-
acterizes the phonon anharmonicity of materials.[24,25] There-
fore, it is commonly accepted that high lattice thermal conduc-
tivity requires light constituent element, simple crystal structure
with a small unit cell, stronger bond strength, and low phonon
anharmonicity.[14,24,26] This general knowledge is also consistent
with some structure–property relationships of high 𝜅L revealed in
our ML model, i.e., the chalcogenides with dense cell (small VA)
composed of light atoms (small mA) confined by stronger bonds
(small lB) are more likely to show higher 𝜅L (Figure 3a–c).

The descriptors concerning the coordination environment
within the lattice (VCN and BVS) would present a more compli-
cated association with 𝜅L that either a too large or too small value
would be harmful (Figure 3d). For a certain cation, VCN tells the
possible number of bonding anions, while BVS indicates the pos-
sible valence state on the cation.[27] A too large VCN or BVS sug-
gests a complex bonding environment and may introduce higher
phonon anharmonicity, resulting in the reduced 𝜅L.[24] Mean-
while, a too small VCN or BVS indicates large interatomic dis-
tances and consequently weak chemical bonds which is also un-
favorable to increasing 𝜅L. The optimized VCN and BVS for high
𝜅L is 4–5 and 2–3, respectively (Figure 3d). In other words, chalco-
genides composed of tetrahedral and penta-coordinated motifs in
which the central cations have the oxidation states of +2 and +3
are promising to possess large 𝜅L.

The polarity of chemical bonds and lattice anisotropy are also
influential to 𝜅L. As an indicator of bond polarity, the effect
of Δ𝜒A on 𝜅L is double-edged. On the one hand, 𝜅L would
be decreased owing to the enlargement of electronegativity dif-
ference (Δ𝜒A) in a material by either inducing large lattice
distortion[28] or introducing strong electron–phonon interaction
like Fröhlich electron–phonon coupling which can scatter heat-
carrying phonons.[29] On the other hand, the strongly polarized
bonds with large Δ𝜒A can prompt the longitudinal optical (LO)–
transverse optical (TO) phonon splitting which would slow down
the decrease of 𝜅L over temperature, leading to high 𝜅L at a cer-
tain temperature.[30] As clearly indicated in Figure 3e, the Δ𝜒A
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 15214095, 2024, 6, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202309675 by U
niversity O

f Science &
 T

ech B
eijin, W

iley O
nline L

ibrary on [25/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 3. Illustration of 𝜅L
ML-TL with different a) VA, b) mA, c) lB, d) BVS (blue) and VCN (violet), e) Δ𝜒A, f) ΔmA (gold) and ΔDn (green). Clearly, small

values of VA, mA, lB, ΔmA, and ΔDn are beneficial to obtaining large 𝜅L, while the effects of BVS, VCN, and Δ𝜒A are double-edged. The red dashed line
and blue area denote the approximate envelopes of all data points.

of 0.8–1.0 in chalcogenides is optimal to achieve high 𝜅L. With
the 𝜒A (i.e., electronegativity) of major chalcogen elements being
2.5–2.6, the 𝜒A of cations should be around 1.5–1.8. This means
that the choice of cations prefers to IIB, IIIA, IVA, and VA groups.
At the same time, the lattice anisotropy described by ΔDn and
ΔmA has an obviously negative correlation with 𝜅L (Figure 3f),
since high anisotropy will add to the complexity of a structure
and increases the chance of phonon scattering and is disadvan-
tageous to promoting 𝜅L. Indeed, the structures predicted with
extremely large 𝜅L at an order of ≥102 are mainly binary com-
pounds with uniform chemical groups.[24]

2.4. Screening of Mid-IR NLO Chalcogenides with High 𝜿L and
Balanced Properties

In order to further screen the mid-IR NLO chalcogenides with
balanced properties, the properties including PBE-calculated
bandgap (Eg

PBE), number of inequivalent atom sites in the primi-
tive cell (Nsite), and energy above hull (Ehull) are extracted from the
2946 candidates with 𝜅L

ML-TL > 2.27 W m−1 K−1. The Eg
PBE and

Ehull indices are first-principles (density functional theory [DFT])
values by PBE functional and incorporated in the MP database.
By considering the calculated Eg

PBE usually smaller than the ex-
perimental bandgap by about 30%,[4] the compounds with Eg

PBE

≥ 2.00 eV are selected. In the 2946 materials, 313 have a Eg
PBE

no less than 2.00 eV. Among these 313 candidates, we further
choose the materials with Ehull ≤ 0.01 eV to ensure stability and
synthesizability of candidates and Nsite < 30 to save computa-

tion resources for further investigation. After this coarse screen-
ing step, 78 chalcogenides are retained, in which 39 candidates
have been reported for the NLO properties, certainly including
those with large LIDT such as LiAlS2,[3e] Ba(BS2)2,[31] Y3GaS6,[3a]

Na4MgSi2Se6,[3c] Na4SnS4,[32] Na6ZnS4,[33] and Li2MGeS4 (M
= Cd, Zn),[3b,34] and some other candidates such as Sr2SnS4
and Li4TiS4 considered promising with high 𝜅L by other field
researchers.[13] This confirms the validity of our screening ap-
proach. The relevant data are listed in Table S3 (Supporting Infor-
mation). For the remaining 39 candidates without reported NLO
properties, 21 compounds are further ditched as they have un-
certain sites, are duplicate with known NLO materials, or contain
lanthanide elements like Nd, Dy, and Er that cannot be handled
correctly in our first-principles method (including Yb(DyS2)2,
Tb2YbS4, Sr(PrS2)2, Yb(SmS2)2, Sr(LaS2)2, Sr(NdS2)2, Yb(PrS2)2,
Yb(NdS2)2, La2YbS4, and Dy6Mg(GeS7)2). After that, we perform
the first-principles calculations on the bandgaps Eg

sx-LDA (by us-
ing the more accurate but more expensive hybrid sx-LDA func-
tional) and optical properties for the 18 remaining structures, and
the results are given in Table 1.

Using Eg
sx-LDA > 3.00 eV as standard, 15 out of the 18 candi-

dates are screened, of which 10 compounds with dij > 10× KDP
are finally screened out as potential mid-IR NLO materials with
preferable optical properties and large 𝜅L. All these 10 chalco-
genides are either existing compounds or dynamically stable with
no imaginary phonon modes (Figure S2, Supporting Informa-
tion). Among them, Li2SiS3 and AlZnGaS4 fulfill the most opti-
mized phase matching condition 0.03 < Δn < 0.10 with a mod-
erate birefringence and are chosen as the most balanced ones. In

Adv. Mater. 2024, 36, 2309675 © 2023 Wiley-VCH GmbH2309675 (5 of 11)
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Table 1. Calculated results for 18 potential mid-IR NLO chalcogenides.

Candidate Space group 𝜅L
ML-TL

[W m−1 K−1]
Eg

sx-LDA

[eV]
dij

[pm V−1]
Δn @1064 nm

BeTe P63mc 91.25 2.42 d33 = 8.23 0.001

MgS P63mc 12.85 4.49 d33 = 0.91 0.012

*MgTe P63mc 12.42 3.41 d33 = 13.00 0.010

*DL-Al2ZnS4 I4̄ 10.68 3.10 d36 = −7.80 0.023

*Al2ZnSe2S2 C2 10.48 3.29 d36 = 10.91 0.014

MgSe P63mc 10.04 3.76 d33 = 3.70 0.009

*AlZnGaS4 I4̄ 9.69 3.66 d36 = −11.19 0.032

KLiZnS2 I4̄m2 7.40 2.98 d24 = −d15 = 5.33 0.013

MgCdTe2 P4̄m2 6.14 2.45 d24 = −d15 = 22.69 0.057

*RbLiZnS2 I4̄m2 4.06 3.08 d24 = −d15 = 5.16 0.014

*P-Li3NbS4 P4̄3m 3.93 4.35 d36 = 7.17 0.000

*CsLiZnS2 I4̄m2 3.68 3.25 d24 = −d15 = 5.10 0.016

Y6Mg(GeS7)2

P3 3.26 3.16 d24 = d15 = −2.30

d33 = −1.05

0.008

Y6Mg(SiS7)2 P3 3.05 3.16 d24 = d15 = −1.20

d33 = −1.72

0.014

*𝛽-Na3PS4 I4̄3m 3.01 3.34 d36 = 8.32 0.000

Y6Al2SiS14 P3 2.92 3.26 d16 = −d22 = 1.24

d33 = −1.83

0.050

*Al2S3 Cc 2.67 3.79 d11 = −6.26

d15 = −2.86

0.020

*Li2SiS3 Cmc21 2.46 4.23 d15 = −4.05

d24 = −2.84

0.066

Note: The 10 compounds with Eg
sx-LDA > 3.00 eV and dij > 10× KDP are marked by star symbols.

addition, diamond-like (DL)-Al2ZnS4, Al2ZnSe2S2, ALiZnS2 (A=
Rb or Cs), and Al2S3 (Cc) also have promising dij and Eg

sx-LDA but
are probably non-phase-matchable due to their small theoretical
Δn. MgTe, 𝛽-Na3PS4, and P-Li3NbS4 are intrinsically not phase-
matchable despite their large dij and Eg

sx-LDA, because these three
materials possess extremely small Δn values since they are com-
posed of only one type of tetrahedral NLO motif and/or crystal-
izes in cubic lattices.

In order to investigate the structural chemistry conditions for
balancing dij and 𝜅L, we focus on the known NLO materials from
the 6046 chalcogenides in MP database. There are 27 materi-
als in which the dij data have been reported in previous litera-
tures that satisfy the conditions of Nsite < 30, Ehull ≤ 0.01 eV,
and Eg

PBE ≥ 2.00 eV but with small 𝜅L
ML-TL (𝜅L

ML-TL ≤ 2.27 W
m−1 K−1), see Table S4 (Supporting Information). So, combining
the data listed in Table 1 and Figures S3 and S4 (Supporting In-
formation), totally a set of 84 NLO materials can be established.
Figure 4a shows the distribution of dij and 𝜅L

ML-TL data from the
84 NLO-active chalcogenides. Based on this database, one may
further conclude the structural chemistry conditions to achieve
optimized performance of high 𝜅L and balanced NLO properties
in chalcogenides from the element and coordinate levels as fol-

lows. i) On the element level, a statistical analysis is conducted on
the element selection of cations that tend to enlarge 𝜅L, Eg, and dij
at the same time. Figure 4b plots the dependence of the numbers
(N) of chalcogenides containing specific elements that 𝜅L

ML-TL

> AGS and Eg
PBE ≥ 2.00 eV (N(𝜅ML−TL

L >AGS) and N(EPBE
g ≥2.00 eV)) on

the dij magnitude in all 6046 chalcogenides. Clearly, the chalco-
genides with main-group short period (especially IIIA, IVA, and
VA families) elements like Al, Ge and P, along with IIB group
elements such as Zn and rare earth elements from La family,
are more likely to simultaneously provide prominent 𝜅L, Eg, and
dij in a material. ii) On the level of coordination structure, using
VCN and BVS as the main indices, it is revealed that the four-
or five-coordination structures and +2 to +3 oxidation states for
cations have large dij (Figure 4c), which is actually overlapped
with the optimal structural characteristics for high 𝜅L. This also
accords with our high-throughput screening results where all of
the major functional groups in the good candidates are the IIIA,
IVA, VA, and IIB cation-centered tetrahedrons including [AlS4],
[ZnS4], [ZnSe4], [GaS4], [SiS4], [PS4], etc. In addition, to increase
the birefringence Δn, the large lattice anisotropy is preferable,
and the structures with ΔDn > 0.5 Å have more chance of show-
ing large Δn (Figure 4d), which is consistent with other reported
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Figure 4. a) Distribution of dij and 𝜅L
ML-TL data from 84 NLO-active chalcogenides that satisfy the conditions of Nsite < 30, Ehull ≤ 0.01 eV, and Eg

PBE ≥

2.00 eV. Compounds falling into the red shaded area on the upper right are the candidates that satisfy the optimal criteria of 𝜅L
ML-TL > AGS and dij >

10× KDP. b) Evaluation on the number of chalcogenides with different elements by considering 𝜅L, Eg, and dij. The elements on the upper right are more
likely to have high 𝜅L and large Eg in chalcogenides. The color of the circles represents the magnitude of average dij of chalcogenides containing the
specific elements in pm V−1. c) Relationship between dij, BVS, and VCN for the NLO-active chalcogenides satisfying Nsite < 30, Ehull ≤ 0.01 eV and Eg

PBE

≥ 2.00 eV. Red dashed lines indicate the approximate distribution for large dij. d) Relationship between Δn and ΔDn for the NLO-active chalcogenides
satisfying Nsite < 30, Ehull ≤ 0.01 eV, and Eg

PBE ≥ 2.00 eV. The red dashed line and blue area denote the approximate envelopes of all data points.

studies.[16c] However, large lattice anisotropy is harmful for im-
proving the thermal conductivity. For mid-IR NLO applications,
since the preferred Δn is within 0.03–0.10, a relatively small ΔDn
≈ 0.25 Å is acceptable for maintain moderate Δn while maximiz-
ing 𝜅L.

2.5. First-Principles Characterization of Selected NLO
Chalcogenides with High 𝜿L

As obtained from the above screening procedures, Li2SiS3 and
AlZnGaS4 are predicted to have very balanced mid-IR NLO per-
formance (see Table 1). Here, we make the first-principles cal-
culations to confirm the high thermal conductivity in these two
chalcogenides.

Li2SiS3 crystallizes in Cmc21 (36) space group with orthorhom-
bic enargite-like structure consisting of corner-sharing [LiS4] and
[SiS4] tetrahedrons (Figure 5a). Based on the linearized phonon

Boltzmann equation (LBTE),[35] the first-principles 𝜅L values at
300 K are 3.19, 4.70, and 4.10 W m−1 K−1 along xx, yy, and zz
directions, respectively (Figure 5b), basically consistent with the
predicted 𝜅L

ML-TL (2.46 W m−1 K−1). Density functional theory
calculations show that Li2SiS3 has a large indirect bandgap of
4.23 eV and wide IR transmission range up to ≈17.1 μm (Figures
S3 and S4, Supporting Information), and the birefringence Δn is
≈0.066 (Figure S5, Supporting Information), indicating the capa-
bility of this crystal to achieve phase match in the mid-IR region.

The further SHG-weighted electron density analysis reveals
that, the electron orbital near Si and S is the primary contributor
of the largest component of SHG coefficient (d15) while almost
no SHG-weighted electron cloud is found near Li (Figure 5c),
confirming [SiS4] tetrahedron as the main SHG-active group in
Li2SiS3. This is also supported by band-resolved SHG analysis
and partial density of states (PDOS), see Figure S3 (Supporting
Information). Note that, although the structure of Li2SiS3 was
first reported in 1989,[36] it has only been synthesized in powder

Adv. Mater. 2024, 36, 2309675 © 2023 Wiley-VCH GmbH2309675 (7 of 11)
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Figure 5. a) Structure of Li2SiS3. b) First-principles 𝜅L calculated by LBTE method in Li2SiS3 compared to the benchmark AGS. c) SHG-weighted electron
density of Li2SiS3. Only the virtual electron (VE) process is displayed since it dominates d15 (see Figure S3, Supporting Information). d) Structure
of AlZnGaS4. e) First-principles 𝜅L calculated by LBTE method in AlZnGaS4 compared to the benchmark AGS. f) SHG-weighted electron density of
AlZnGaS4. Only the VE process is displayed since it dominates d36 (see Figure S6, Supporting Information).

and may contain impurities such as centrosymmetric Li4SiS4 and
metastable n-Li2SiS3 phase.[37] It requires further investigations
to obtain large and pure crystals for experimental characteriza-
tions on the NLO and thermal properties.

AlZnGaS4 crystallizes in I4̄ (82) space group where Zn is
bonded to four equivalent S atoms to form [ZnS4] tetrahedrons
that share corners with four equivalent [GaS4] tetrahedrons and
four equivalent [AlS4] tetrahedrons (Figure 5d). The LBTE calcu-
lated 𝜅L values of AlZnGaS4 at 300 K are 8.67 W m−1 K−1 in the
xx (yy) direction and 10.04 W m−1 K−1 along the z-axis, respec-
tively (Figure 5e), which is in excellent agreement with our ML
prediction (9.69 W m−1 K−1). This compound is predicted to have
a direct Eg

sx-LDA of 3.66 eV and the good IR transparent range
and birefringence for mid-IR NLO applications (Figures S4–S6,
Supporting Information). As shown by SHG-weighted electron
density analysis, the major SHG coefficient d36 in AlZnGaS4 is
mainly contributed by the occupied S orbitals and unoccupied
orbitals from all three cations (Al3+, Zn2+, and Ga3+), meaning
that all three tetrahedral groups have considerable contribution
to the NLO responses (Figure 5f and Figure S6, Supporting In-
formation).

It should be emphasized that AlZnGaS4 can be obtained by el-
ement substitution from the reported Ga2ZnS4 structure,[1c,38] a
member in the A2BC4 (A from IIIA group; B from IIB group; C
= S, Se) defect-chalcopyrite family which shares structural sim-
ilarity with the chalcopyrite-type AGS and has long been recog-

nized as a competitive NLO material family.[1c,39] Our data analy-
sis confirms that this family contains many NLO materials with
higher 𝜅L

ML-TL than the AGS (also shown in Figure 4a), thanks
to the tetrahedral coordinated structures and the cation compo-
sitions from IIB and IIIA groups. The detailed comparison be-
tween AlZnGaS4 and the benchmark AGS in thermal conductiv-
ity is presented in Figure S7 (Supporting Information). As the
NLO properties in AlZnGaS4 have never been reported previ-
ously, experimental investigations on these chalcogenides are de-
served to be carried out in further research.

3. Conclusion

In conclusion, we present in this work an effective machine learn-
ing approach to predict the lattice thermal conductivity of materi-
als and integrate it into a high-throughput screening process us-
ing the first-principles calculations to identify novel mid-IR NLO
crystals with high thermal conductivity in the chalcogenide do-
main. Ten out of 6046 NCS chalcogenides are selected as poten-
tial high-𝜅L mid-IR NLO materials with calculated dij > 10× KDP,
Eg

sx-LDA > 3.00 eV and predicted 𝜅L
ML-TL > AGS, among which

two chalcogenides, namely, Li2SiS3 and AlZnGaS4, are phase-
matchable with 0.03 < Δn < 0.10.

With the first-principles level of accuracy, the big database
of 𝜅L generated by machine learning is utilized to investi-
gate the structure–property relationships in 𝜅L as well as the

Adv. Mater. 2024, 36, 2309675 © 2023 Wiley-VCH GmbH2309675 (8 of 11)
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optimal structural chemistry conditions to achieve a balance
between NLO and thermal properties in non-centrosymmetric
chalcogenides. We found that a dense and simple lattice struc-
ture with low anisotropy, light atoms and strong covalent
bonds is beneficial for higher 𝜅L. Structures composed of four-
coordinated motifs where central cations show a bond valence
sum of +2 to +3 and are from IIIA, IVA, VA, and IIB groups
are advantageous to combine good NLO properties and high
𝜅L, such as the defect-chalcopyrite chalcogenides represented by
AlZnGaS4. Our ML-boosted screening strategy provides not only
a powerful tool to discover potential high-𝜅L NLO crystals in a
high-throughput manner, but also a novel approach to under-
stand the mechanism in balancing NLO and thermal proper-
ties of materials through big data, which opens a new horizon
in the search for high-𝜅L and NLO-active material genes and
is expected to be extensible for more NLO materials systems
other than chalcogenides. Note that in the present work some
important physicochemical properties of NLO crystals, e.g., hy-
groscopes and mechanical stability, are not considered. It is an-
ticipated that the more comprehensive investigations on the bal-
anced NLO crystals will be fulfilled in future studies with the de-
velopments of computational and experimental means.

4. Experimental Section
Data Retrieving: All 𝜅L values at 300 K used for ML modeling were

obtained via Citrination platform (https://citrination.com/)[40] which pro-
vides access to data from various reported works. Computed 𝜅L (𝜅L

cal)
values were retrieved from TE Design Lab database[12b] as well as data de-
posited from other studies,[41] and experimental 𝜅L (𝜅L

exp) values were
from different literatures.[7,12a,17b,41] The MP database[20] was used to
crawl their corresponding structure data, along with Eg

PBE, Nsite, and Ehull,
since this database contains not only structure CIF documents but also
certain first-principles material properties calculated by PBE functional[42]

which can be conveniently accessible with an API interface. Structures with
the same MP id were considered identical as one material. If there were
multiple reported 𝜅L

cal or 𝜅L
exp values for one material via different data

sources, only the smallest value was reserved. In total, 2633 sets of 𝜅L
cal

value and 411 sets of 𝜅L
exp value were originally found. After discarding du-

plicate data and materials not included in the MP database, 2243 nondu-
plicate 𝜅L

cal and 167 nonduplicate 𝜅L
exp were left. The structure-related

information (mA, ΔmA, Δ𝜒A, VA, lB, ΔDn, BVS, and VCN) was obtained
using Pymatgen package.[43]

Machine Learning Algorithm: The crystal graph convolutional neural
network (CGCNN)[23] was used as the basis of ML modeling. This algo-
rithm enjoys the advantage of using merely the structural CIF documents
as the input without demanding any measured or calculated physical in-
dexes. CGCNN is a neural network architecture in which the major com-
ponents are composed of convolutional layers followed with hidden fully
connected layers. In CGCNN, the crystal structure is transformed into a
multigraph G, in which nodes and edges i indicate atoms and chemical
bonds between them, respectively. Each node i (edge k) is represented by
a corresponding atom (bond) feature vector vi (uk) encoding the property
of the atom (bond). The multigraph G is transformed into continuous rep-
resentations and input to the convolutional layers, where the atom feature
vector vi is iteratively updated by “convolution” with surrounding atoms
and bonds with a nonlinear graph convolution function. The output by the
convolutional layers then produces an overall feature vector vc for the crys-
tal after pooling. Finally, vc used as input to a network of fully connected
layers to predict the target property. The more details on CGCNN refer to
the work by Xie and Grossman.[23]

Since the 𝜅L data are distributed in a wide range that spans several
orders of magnitude depending on the corresponding material, log10𝜅L

was used instead of 𝜅L as the output label. Mean average error (MAE) and
coefficient of determination R2 were used as the main accuracy indexes to
evaluate the forecasting ability of the machine learning model

MAE =

∑n
i
|||log10𝜅

ML
L,i − log10𝜅

R
L,i
|||

n
(1)

R2 = 1 −

∑n
i

(
log10𝜅

ML
L,i − log10𝜅

R
L,i

)2

∑n
i

(
log10𝜅

R
L,i − log10𝜅

R
L, i

)2
(2)

For number i material in total n samples, 𝜅L ,i
ML represents the ma-

chine learning generated value of its𝜅L, and 𝜅L ,i
R represents the reported

(either computational or experimental in different cases) value of its

𝜅L. log10𝜅
R
L,i means the average value of log10𝜅

R
L,i in all samples. Since

log10a − log10b = log10
a
b

, the physical meaning of MAE here is to mea-
sure the average difference between machine learning values and actual
values of 𝜅L in ratio. The machine learning results should be 1

10MAE to
10MAE times of the actual value. As for R2, a higher value (closer to 1)
indicates better fitting capability of the ML model on the test data. A train-
ing/test set ratio of 4:1 is chosen in all ML modeling processes, and 20%
of the training set is reserved for validation in every training cycle.

To accurately predict experimental 𝜅L with a comparably small 𝜅L
exp

dataset, the CGCNN code was modified to implement TL. TL was real-
ized by first establishing a ML model on a large dataset and then extract-
ing part of information in this model as basis to structure a new model
trained on a small dataset. In this way, the second model can utilize knowl-
edge learned from both the large and the small datasets while account-
ing for the difference between the two datasets at the same time. Sev-
eral published studies have successfully performed TL on the CGCNN
model with different implementation styles.[17b,22a] Here, a “layer freez-
ing” method was used to implement TL. The idea was to copy the ear-
lier layers of a pretrained model to a second TL model and freeze them,
meaning that the parameters of these layers were fixed without additional
optimizations in the TL model. The optimization of parameters was only
performed for the newly built latter layers of the second TL model, as il-
lustrated in Figure S1 (Supporting Information). Specifically in this study,
the first CGCNN was trained on 𝜅L

cal dataset with 2243 samples. Then its
convolutional layers and the following first fully connected layer (namely,
the “conv_to_fc” layer in the CGCNN method) were frozen and transferred
to the second TL-CGCNN to be trained on 𝜅L

exp dataset while the output
layer and other fully connected layers (if there exists any) were ditched.
When training TL-CGCNN on the 𝜅L

exp set with 167 samples, additional
hidden fully connected layers were added after the transferred layers and
before the output layer, which was iterated to account for the difference
between the computational and experimental datasets. All parameters in
the transferred layers remain unchanged. The TL-CGCNN code can be
found at https://github.com/wuqc970716/TL-CGCNN. The super param-
eters were optimized using Optuna package[44] by fivefold cross-validation
realized with scikit-learn package.[45] The optimized super parameters for
the CGCNN and TL-CGCNN model in this study are provided in Table S5
(Supporting Information).

First-Principles Calculations on Electronic, Optical, and Phonon Proper-
ties: The first-principles calculations were performed by the plane wave
pseudopotential method using CASTEP[46] based on DFT. The lattice pa-
rameters and atomic positions in the unit cells of all first-screened can-
didates were fully optimized using the BFGS method.[47] The exchange
correlation (XC) functional is described by the local density approxima-
tion (LDA).[48] Norm-conserving pseudopotentials were used to describe
the interactions between the valence electrons and the ionic cores.[49] A
Monkhorst–Pack[50] k-point mesh spanning less than 0.04 Å3 in the Bril-
louin zone was chosen for geometry optimization as well as optical calcu-
lations. The optimization convergence thresholds and kinetic energy cut-
off were set as default in the ultrafine option of the software. The SHG
coefficient dij is one-half of the second-order NLO susceptibility 𝜒 ijk

(2),

Adv. Mater. 2024, 36, 2309675 © 2023 Wiley-VCH GmbH2309675 (9 of 11)
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which was calculated using the expression developed by Lin et al. as shown
below:[51]

𝜒
(2)
ijk

= 𝜒
(2)
ijk

(VE) + 𝜒
(2)
ijk

(VH) + 𝜒
(2)
ijk

(two bands) (3)

𝜒
(2)
ijk

(VH) = e3

2ℏ2m3

∑
vv′c

∫ d3k
4𝜋3

P (ijk) Im
[
pi

vv′ p
j
v′cp

k
cv

] (
1

𝜔3
cv𝜔

2
v′c

+ 2
𝜔4

vc𝜔cv′

)
(4)

𝜒
(2)
ijk

(VE) = e3

2ℏ2m3

∑
vcc′

∫ d3k
4𝜋3

P (ijk) Im
[
pi

vcp
j

cc′
pk

c′v

] (
1

𝜔3
cv𝜔

2
vc′

+ 2
𝜔4

vc𝜔c′v

)
(5)

𝜒
(2)
ijk

(two bands) = e3

2ℏ2m3

∑
vc

∫
d3k
4𝜋3

P (ijk)
Im

[
pi

vcp
j
cv
(
pk

vv − pk
cc

)]
𝜔5

vc

(6)

Here, i, j, and k are Cartesian components. v and v′ denote valence
bands, while c and c′ denote conduction bands. P(ijk) denotes full permu-
tation. At zero frequency, the total second-order NLO susceptibility can
be described to virtual electron (VE), virtual hole (VH), and two-band pro-
cesses. The contribution from two-band process is extremely small and
can be neglected. The band-resolved SHG analysis was performed to iden-
tify the contribution of SHG from VE and VH processes originating from
the occupied or unoccupied electronic states in a level-by-level basis.[52]

In the SHG-weighted electron density analysis, by further applying the per-
centage of SHG contribution onto the electronic charge densities of corre-
sponding orbitals, the occupied or unoccupied electronic states irrelevant
to SHG are not shown, whereas those vital to SHG are highlighted in real
space.[4]

Owing to the underestimation of bandgap by LDA functional, the
screened exchange LDA (sx-LDA) functional[53] was used to calcu-
late bandgaps in high accuracy. In the optical calculations, a scissors
operator[54] which represents bandgap difference between the sx-LDA and
LDA bandgaps was adopted to correct the optical properties. Past stud-
ies proved that these parameters were sufficiently accurate.[1c,1d] Phonon
calculation was performed by linear response method to evaluate the dy-
namic stabilities of screened candidates.[55]

First-Principles Calculations on Thermal Conductivity: The high-accuracy
calculation on lattice thermal conductivity was implemented by solving
the LBTE[35] with single-mode relaxation time (SMRT) approximation[56]

which can be described as

𝜅L = 1
VN0

∑
𝜆

C𝜆v𝜆 ⊗ v𝜆𝜏
SMRT
𝜆

(7)

where V and N0 are volume and number of unit cell, respectively. C𝜆, v𝜆,
and 𝜏𝜆

SMRT are the mode-dependent heat capacity, phonon group velocity,
and single-mode relaxation time of mode 𝜆. The 𝜏𝜆

SMRT can be approxi-
mated by phonon lifetime 𝜏𝜆 here.[56]

The tetrahedron method was used to perform SMRT calculation with
Phono3py package.[41b,57] For all cases in this work, the third-order force
constants were calculated on 2 × 2 × 2 supercells of the primitive cells
using Monkhorst–Pack grids of 3 × 3 × 3. All 𝜅L values were calculated
with 8× 8× 8 q-point meshes. A 5 Å cutoff for interatomic interactions was
chosen to save computational resources. The calculated 𝜅L for AgGaS2 is
0.82 W m−1 K−1 at 300 K, which is smaller than the measured value in
literature but close to the calculated results in other reports (e.g., 0.88 W
m−1 K−1 by Chu et al.)[13] under similar computation parameters, thus
proving the validity of the methods.
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the author.
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