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Beyond von-Neumann Computing with Nanoscale
Phase-Change Memory Devices

C. David Wright,*

Historically, the application of phase-change materials and devices has been
limited to the provision of non-volatile memories. Recently, however, the
potential has been demonstrated for using phase-change devices as the basis
for new forms of brain-like computing, by exploiting their multilevel resist-
ance capability to provide electronic mimics of biological synapses. Here,

a different and previously under-explored property that is also intrinsic to
phase-change materials and devices, namely accumulation, is exploited to
demonstrate that nanometer-scale electronic phase-change devices can also
provide a powerful form of arithmetic computing. Complicated arithmetic
operations are carried out, including parallel factorization and fractional divi-
sion, using simple nanoscale phase-change cells that process and store data
simultaneously and at the same physical location, promising a most efficient
and effective means for implementing beyond von-Neumann computing.
This same accumulation property can be used to provide a particularly simple
form phase-change integrate-and-fire “neuron”, which, by combining both
phase-change synapse and neuron electronic mimics, potentially opens up a
route to the realization of all-phase-change neuromorphic processing.

1. Introduction

Electronic systems and devices have revolutionized almost every
aspect of our daily life, impacting on all sectors of society. This
revolution has been brought about by the seemingly inexorable
improvement in the performance, and the reduction in cost, of
silicon-based CMOS (complementary metal oxide silicon) tech-
nologies, in particular CMOS-based microprocessors, memo-
ries and logic. The progress of CMOS technology over the past
twenty years has been driven by an aggressive downscaling of
minimum feature sizes. However, as pointed out in the 2011
ITRS (International Technology Roadmap for Semiconductors)
Roadmap the continued scaling of CMOS is problematic and
there is a pressing need for new device concepts, in particular
for a “new beyond-CMOS information processing technology”
in which “a nonbinary data representation may be required.”!
In this work we show that phase-change electronic materials
and devices have the potential to meet such pressing needs. In
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particular we show that electronic phase-
change devices are capable of performing
complicated  non-binary  arithmetic
processing and computation, including
for example fast parallel factorization and
fractional division. Furthermore, such
computation is carried out simultane-
ously with storage, at the same physical
location, of the computed result, leading
to a particularly simple and effective form
of non-von-Neumann computing. The
classical von-Neumann architecture,?
which physically separates processing and
memory operations, is limited in so much
as the processor cannot execute a program
faster than instructions and data can be
fetched from, and returned to, memory,
leading to the well-known von-Neumann
bottleneck.?! While scientists and engi-
neers have been successful in reducing
the impact of this bottleneck (by for
example increasing use of cache memory
and, more recently, multicore architec-
tures), it has long been realized that a computer architecture
in which processing and storage are carried out simultaneously
and at the same physical location could offer very significant
performance (speed and power) benefits. Thus, much effort
has recently been expended in searching for materials, devices
and systems capable of providing alternative computing para-
digms, including memristor, e.g.,*”) neuromophic, e.g.,®°l and
connectionist, e.g.,[1%12 type approaches. Phase-change based
systems, as we show here, also offer an attractive route to an
alternative computing architecture.

Reversible switching in various types of disordered semi-
conductors that subsequently became known as phase-change
materials was first reported by Ovshinsky in the 1960s.'3) Of
course many materials exist in an amorphous as well as a crys-
talline phase; however, only a very small subset have all the
properties necessary (e.g., large electrical or optical contrast
between phases; fast crystallization at programming tempera-
tures but stability against spontaneous crystallization for many
years at ambient temperature; rapid amorphization capability)
to be considered as technological phase-change materials.
Indeed, it is only very recently that a detailed understanding has
been achieved of what makes a true phase-change material, and
why some seemingly similar materials display technologically
useful phase-change behavior but others do not, thus allowing
the recent development of a set of design rules for what consti-
tutes a phase-change material.' One of the most extensively
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Figure 1. a) Schematic of the PCM mushroom-type cell used for simulation of the phase-change
base-10 accumulator response. b) The resistance of the PCM cell in (a) after the application
of each of 10 input pulses with each input pulse having an amplitude of 1.085 V and being
of 60 ns duration. This is the basic accumulator response, in this case operating in base-10.
c) Shows the simulated structure of the active region after the first, fifth, ninth and tenth pulses
(i-e., state-1, state-5, state-9 and state-10): dark blue regions are amorphous while crystallites
are shown in various colors (and the brown region surrounding the dome is also crystalline).

www.afm-journal.de

arithmetic operations.l?’l Here we show that
this arithmetic capability is also available in
the electrical domain and, importantly, on
the nanoscale. Furthermore, as well dem-
onstrating addition, subtraction, multiplica-
tion and division with single electrical phase
change cells of the 100 nm size scale, we also
demonstrate explicitly the potential of nano-
scale phase-change accumulators to i) work
directly in a range of arbitrary bases (we dem-
onstrate systems working from base-2 up to
as high as base-512), ii) perform complex
arithmetic operations, such as parallel factori-
zation and fractional division, iii) process and
store data simultaneously and at the same
physical location, iv) implement a form of
sequential multi-input logic, and v) provide
a simple and efficient form of integrate-and-
fire neuronal mimic.

2. Results and Discussion

The basic mechanism for implementing
a phase-change accumulator is shown in
Figure 1 using a conventional mushroom-
type PCM cell. In this instance we have
implemented (in simulation) a base-10 accu-

studied phase-change materials, and the one that we use in this
work, is the ternary alloy Ge,Sb,Tes which has been used for
optical disk memories,[”! scanning-probe based storage,1®-18l
the fabrication of synaptic mimics**-2! and, perhaps its most
widely known recent application, the development of binary
non-volatile electrical phase-change memories (PCMs).[2226]
For binary storage, a PCM cell is switched between amorphous
and crystalline phases (and back again) using single pulses.
A relatively high amplitude and short duration (RESET) pulse
is used to form the amorphous phase, a lower amplitude and
longer duration (SET) pulse to form the crystalline phase. In
the amorphous phase the cell exhibits a high resistance (typi-
cally 100s kQ to MQ), while in the crystalline state the cell has
a low resistance (typically 10s kQ). To configure a phase-change
device as an arithmetic computer, we tailor the input pulse
amplitude and/or duration such that the SET state is reached
from the RESET state not with a single pulse (as for normal
binary memory operation) but with a pre-determined number
of pulses, thus providing a form of phase-change accumulator.
Unlike the accumulators to be found in conventional processor
architectures however, the phase-change accumulator is non-
volatile, works directly in high-order bases, is capable of car-
rying out both basic (e.g., addition, subtraction, multiplication,
division) and advanced (e.g., factorization, fractional division)
arithmetic operations, can function as a simple neuronal mimic
and can provide a form of rudimentary non-volatile logic.

The idea of using phase-change materials for arithmetic
computation was originally suggested by Ovshinsky,?”?8 and
we ourselves recently demonstrated in the optical domain and
on the (tens of) micrometer length-scale the execution of basic
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mulator by choosing (or designing) the input
excitation amplitude and duration such that 10 input pulses are
required to convert the cell from the RESET state to the SET
state. Each pulse applied was identical, with an amplitude of
1.085 V and a duration of 60 ns (by comparison a single pulse
of 1.5 V and 60 ns duration completely switches the cell for
normal binary operation, see Supporting Information). The cell
accumulates energy from each input pulse, eventually acquiring
enough energy to transform the active region from the fully
amorphous starting phase to the crystalline phase. Also in
Figure 1 we show the state of the active region of the mush-
room cell for various cell states. It can be seen that in state-1
(i-e., after receipt of 1st input pulse) one or two crystal nuclei
have formed in the amorphous dome, but they have little if
any effect on the cell's resistance. After the input of five pulses
(state-5) a few more nuclei have formed and some are begin-
ning to grow, with further growth clearly evident by state-9, but
not enough to significantly decrease the cell resistance. Between
state-9 and state-10 however there is a large decrease in resist-
ance, and by state-10 the amorphous dome is almost fully re-
crystallized and the resistance is well below our chosen decision
level of 300 kQ. It can be seen from Figure 1 that there exists
a high resistance plateau region. Here states (corresponding to
the input of pulses 1 to 7 in this case) lie below the percola-
tion threshold (for conduction, see ref. [30]), thus having sub-
stantially the same resistance values; nevertheless these states
remain distinct since it takes different amounts of energy (i.e.,
different number of subsequent excitation pulses) to transform
each different state in the plateau region to the SET state (or to
a resistance below the decision level). Thus, we are not storing
information in different resistance levels and are not using the
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state-10 are given in the Supporting Informa-

CAFM

top tip

electrode

Pt/Ti | 20 nm

6 nm capping layer

10nm | phase change layer

40 nm bottom electrode

substrate

tion. Once we have designed an accumulator
response of the form shown in Figure 1, we
can carry out a remarkable range of arith-
metic computations in a most efficient (in
terms of the number of cells required), fast
(PCM cells have recentlyl®® been switched
in 500 ps) and straightforward manner (as
we demonstrate experimentally below). Fur-
sioy/si thermore, the phase-change accumulator
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ously in the same cell, potentially providing
a powerful form of beyond von-Neumann
computing.

We experimentally implemented phase-
change accumulators working in various
bases using the pseudo-device structure
nm shown in Figure 2a. Here the top electrode

0 2.0
Voltage (V)

3.0 4.0 32 34 36
Pulse Amplitude (V)

B is a lithographically defined Pt/Ti pad con-

Figure 2. a) Schematic of the phase-change ‘pseudo-cells’ and method of contacting the
top electrode using a CAFM (conducting diamond) tip. b) Experimental /-V curve showing
a threshold switching voltage (from amorphous to crystalline) of approximately 3.7 V. c) The
number of (=100 ns) pulses needed to switch a cell from high-resistance to low-resistance as

a function of pulse amplitude.

same scheme as proposed for multi-level PCM memories1-34

or for phase-change based synaptic-like functionality.}*-2!
Indeed, a perfect accumulator would have only two-levels
of resistance, one above the decision level for all states from
state-0 to state-(n-1) of a base-n system, and one below the deci-
sion level for state-n. This distinction between the accumulation
regime of phase-change devices and the multi-level regime is
sometimes overlooked and the two are often conflated, but they
are different modes of operation and it is the former, accumula-
tion, that here bestows on phase-change cells their capability for
arithmetic computing. We should also point out that, unlike in
multi-level phase-change memory applications, arithmetic com-
puting via accumulation should not require special methods to
combat resistance drift. Indeed, if the low-resistance end-point
state of the accumulator is the SET state, then this is essentially
stable against resistance drift?334 whereas all other pre-end-
point states will over time drift upwards in resistance, actually
increasing the decision window between resistances above and
below the decision level.

It is easy to see that the system of Figure 1 provides a base-10
accumulator response using a single phase-change cell - each
successive input pulse transforms the phase-change cell sequen-
tially from state 1 to 9 (state 0 being the fully RESET state), and
upon receipt of pulse 10 the cell switches into the low-resist-
ance state, informing us by a simple resistance measurement
(to detect when the resistance is below the decision level) that
the count from 0 to 9 is complete. It should also be stressed
that this process is non-volatile; if the power is removed from
the phase-change system it will remain in its existing state, and
processing can recommence from where it left off when power
is re-supplied. Further details of the models used to produce the
results of Figure 1 and crystallization patterns for all states-0 to

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

tacted by the tip of a conductive atomic force
microscope (C-AFM), and the active layer
is Ge,Sb,Tes. The amorphous carbon (a-C)
layers in the device are electrically conduc-
tive sp2-rich material and allow for tailoring
of the electrical and thermal properties of the
stack while at the same time providing envi-
ronmental protection of the Ge,Sb,Tes, such a-C layers having
been used successfully in previous investigations of phase-
change scanning probe storage.[16-18.3¢]

A static -V curve for our pseudo-devices, as measured by
the C-AFM, is shown in Figure 2b (further details of our experi-
mental procedures are given in the Supporting Information).
In this case the top electrode was positive, but note that the
I-V curve is essentially polarity independent in phase-change
systemsl® since phase-change materials undergo unipolar
switching, unlike many bipolar switching memristive materials
and devices.>™ Tt can be seen that the threshold voltage for
this particular configuration is around 3.7 V. When we apply
input pulses with an amplitude greater than this threshold (and
typical pulse durations of approximately a hundred nanosec-
onds), then the cell switches into the SET state with a single
pulse as in normal binary memory operation. However, if we
reduce the input pulse amplitude (while keeping the duration
constant), then the number of pulses required to reach the
SET state increases, as shown Figure 2c. By appropriate choice
of the input pulse amplitude (and duration - here we used a
full-width-half-maximum (FWHM) pulse width of =100 ns, see
Figure S2 in the Supporting Information) we can thus tailor the
number of pulses required for complete switching (note that for
sensing, i.e., reading, the resistance of a device a voltage is used
that is far below the threshold, typically <1 V, so avoiding any
read-induced changes in resistance). In Figure 3a for example
we show a case for which 10 pulses are required to reach the
low resistance state, yielding a base-10 accumulator suitable for
performing arithmetic directly in base-10 using a single phase-
change cell. In Figure 3b we show accumulator responses suit-
able for working in a variety of different bases, specifically in
this case base-2, base-4 and base-6. Experimentally we have

Adv. Funct. Mater. 2013, 23, 2248-2254
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Figure 3. a) Experimental implementation of a base-10 accumulator. The resistance of the phase-change cell remains high after the input of each of
nine pulses, but after the 10th pulse the resistance of the cell is at or near the SET resistance, so falling below a chosen decision level (here 300 k).
b) Experimental implementation of base-6, base-4, and base-2 accumulators in which the low resistance state is reached after, respectively, six, four,

and two input pulses. Note that all lines shown are guides for the eye only.

been able to demonstrate accumulators working up to as high
as base-512 (Figure S3 Supporting Information), although
lower-order accumulators provided more controllable, reli-
able and repeatable results with our C-AFM based approach
(we would expect superior controllability with real PCM-type
devices). It will be noticed that the responses of Figure 3 show
a more gradual change of resistance (with pulse number) than
evidenced for the PCM cell results of Figure 1. This most likely
reflects a more gradual change in crystallization in the experi-
mental case, resulting from the differences in the structure of
our pseudo-devices from those of real PCM cells (specifically
the PCM cell has a physically-confined active (Ge,Sb,Tes) region
and a bespoke TiN heater-electrode, whereas our pseudo-devices
have a continuous Ge,Sb,Tes layer and no heater electrode).
Nonetheless, it can be seen from Figure 3 that the detection
window (i.e., difference in resistance between states above and
below the decision level) for our pseudo-devices is easily high
enough for practical use, being typically around 100 kQ or so.
We now demonstrate addition, directly in base-10 using the
accumulator response of Figure 3a. For example, to perform
the sum (1;5+3;) we started with the cell of Figure 3a in the
amorphous (RESET) state and applied (3.12 V, 100 ns FWHM)
pulses equal in number to the first addend (one pulse in this
case), thus leaving the phase-change accumulator in state-1 (as
shown in Figure 3a). We then applied (identical) pulses equal
in number to the second addend (three further pulses in this
case), causing the base-10 accumulator to move on to state-4.
The phase-change cell thus carried out the addition (1;4+3;¢)
and simultaneously stored the result, since the cell resides in
state-4. To access the result of the sum we applied identical
input pulses until the cell reached its low-resistance state (i.e.,
state-10), with the complement (to the base) of the number
of pulses needed revealing the result; six pulses were needed
in this case, so the answer to (139+310) is, as expected, 44.
Should the result of an addition exceed 9;,, then the base-10
accumulator is reset, a carry forward recorded, and the process
continued until the required number of pulses have been
inputted to the accumulator (for example (7,¢+6;0) would lead
to the cell being reset once, so a carry forward of one, with the
accumulator left in state-3). As already mentioned, this ability

Adv. Funct. Mater. 2013, 23, 2248-2254
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to work directly in high-order bases with a single phase-change
cell is exceedingly efficient; by comparison a conventional
binary 3-bit full adder requires five AND, five XOR and two OR
gates, i.e., around 100 CMOS transistors, to perform the equiv-
alent of the addition of two base-8 numbers. We should also
mention that phase-change devices have the potential for excel-
lent scalability, down to the single-nanometer scale,*¢-3% so that
a phase-change based approach to computing could potentially
offer very significant savings in terms of chip area as compared
to conventional CMOS implementations.

We now demonstrate experimentally a simple and reliable
way to perform electronic subtraction using nanoscale phase-
change accumulator cells. Here we choose to work in base-6
(demonstrating the flexibility of the phase-change arithmetic
computing approach), so that input pulse amplitude and dura-
tion is tuned to yield base-6 accumulator responses of the form
shown in Figure 3b. To perform subtraction we use two cells
(both working as base-6 accumulators) and the fact that the dif-
ference between two numbers is the same when a common
number is added to each of the numbers in the subtraction.
Specifically here we performed the subtraction (34 —1¢), using
the following steps: i) first we inputted pulses equal in number
to the minuend (3) to Cell A; ii) then we inputted pulses equal
in number to subtrahend (1) to Cell B; iii) next we applied fur-
ther pulses to Cell A until the resistance of Cell A fell below
the decision level (three pulses were needed here, see Figure 4);
iv) finally we inputted to Cell B an identical number of pulses
to that needed in stage (iii) (i.e., three pulses). At the end of this
process the result of the subtraction is stored in the final state of
Cell B; here Cell B was in state-4. To access the result we count
the number of additional (identical) pulses we need to apply to
Cell B until its resistance falls below the decision level; here two
pulses were necessary (see Figure 4), yielding the correct result.
Thus, we have experimentally carried out the base-6 subtraction
(36 — 1) = 26, using two base-6 phase-change accumulators and
re-casting the subtraction as (35 — 1¢) = (36 + 36) — (16 + 3¢). Note
that if we swopped the roles of Cells A and B in the above sub-
traction method, re-casting the subtraction as (3¢ + 5¢) — (16 + 5¢),
the final result would be stored in Cell A and accessed as the
complement to the base of the number of pulses needed to take
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Figure 4. a) Experimental implementation of subtraction using the two-cell method and working directly in base-6. Here we perform the computation
of (36 — 1¢) = 2¢, using two base-6 phase-change accumulators (Cell A and Cell B) and re-casting the subtraction as (35 — 1¢) = (3¢ + 36) — (16 + 3¢),
with the result being stored in Cell B. In (b) we use a single-cell division algorithm to find if the numbers 2 and 4 are factors of the number 6. Cell A is
configured as a base-2 accumulator while Cell B as a base-4; six pulses are input to each cell (re-setting each time the decision level is crossed) and a
cell whose end point is below the decision level has its base as a factor. Here 2 is a factor of 6 since Cell A ends up in the low-resistance state, but 4 is
not a factor of 6 since the end-point for Cell B is a high-resistance state. Note that all lines shown are guides for the eye only.

Cell A below the decision level; this provides algorithmic con-
sistency with the addition method described earlier, which may
be useful in practical systems.

Note that since multiplication can be implemented by
sequential-addition, and division by sequential-subtraction, it
is clear that we can also carry out multiplication and division,
directly in high-order bases, using nanoscale phase-change
accumulators. Indeed, it is possible to carry out division directly
using a single phase-change accumulator rather than by a
two-cell sequential subtraction approach. In this alternative,
single-cell division ‘algorithm’ we use the divisor to define the
threshold, rather than the base, inputting to the accumulator
pulses equal in number to the dividend, re-setting each time
the threshold is passed to reveal the quotient, with the reminder
stored in the cell end-state (see ref. [29] for details). While such
an approach to division is attractive in terms of efficiency, with
only a single cell being needed and division being performed
directly rather than by successive subtractions, the necessity to
re-configure the accumulator (in terms of the number of pulses
required to switch the cell) for each divisor encountered is not
attractive for general computation. However, this method of
division is well suited to parallel factorization. In Figure 4D,
for example, we show the process for parallel factorization
of the number 6 (here, for demonstration purposes, we limit
ourselves to finding if 2 and 4 are factors of 6). To do this we
used two cells operating in parallel: Cell A was set-up so that
it switched after two pulses were inputted, i.e., it operated as
a base-2 accumulator, while Cell B was set-up as a base-4 accu-
mulator. Next we inputted to each cell pulses equal in number
to the number to be factored (6 in this case), resetting a cell (or
in our case, since, as previously shown, re-amorphization in the
C-AFM environment is difficult,'*-18 we moved to a new cell)
should it cross the decision threshold. Once this process has
been completed, any cell whose end point is below the decision
level has its base as a factor. Here, as shown in Figure 4D, after
the inputting of 6 pulses to both cells the end-point of Cell A
was below the decision level, so 2 is a factor of 6, whereas the
end-point of Cell B was above the decision level, so 4 is not a

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

factor of 6. Note that in our C-AFM system it was not possible
to apply pulses in parallel to multiple cells (since we only have
one tip), however, fast parallel operation would be feasible with
real PCM-type devices.

The natural accumulation process inherent to phase-change
materials and devices and that we have used above to perform
arithmetic computations, can also be used to provide a particu-
larly simple form of integrate-and-fire neuronal mimic. For
example, the phase-change cell in the neuron circuit of Figure 5
accumulates excitations from incoming pulses and fires (i.e.,
switches to a low resistance state), causing the comparator to
switch, only after the receipt of a certain number of pulses. If
the mushroom-type PCM cell and input pulses of Figure 1 were
used, the series resistance Rg (in Figure 5) chosen to be around
half the PCM RESET resistance (here Rpgspr = 750 k€, so let
Rs = 375 kQ), and a reference voltage (Vggr) chosen for the
comparator of Vggap/2, then for the first 9 pulses the read input
to the comparator would be below Vg, but would rise above
the reference with the 10th pulse, causing the comparator to
switch and (via a pulse circuit) generate an output spike (note

VPULSE

VReao phase-change
cell to

comparator

Figure 5. A simple phase-change integrate-and-fire neuron circuit that
exploits the accumulation properties of a single phase-change cell to pro-
vide an efficient neuronal mimic.
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that Vygap could be applied separately to the excitation pulses,
or more practicably could be incorporated into such pulses by
using a simple DC offset, as shown in the figure). The number
of pulses needed to make the phase-change neuron fire can of
course be readily adjusted by changing the pulse amplitude
and/or duration used. The circuit of Figure 5 is considerably
simpler than conventional CMOS neurons that can require,
depending on their complexity, around 8 to 20 CMOS transis-
tors to implement.}%*? (although some of these transistors,
typically four or five,*’] are used to implement comparator-type
amplifiers, which are also used in our design of Figure 5). The
fact that phase-change cells have also recently been shown to
be capable, by using the multi-level resistance regime, of emu-
lating a synaptic-like responsel!®2!l means that it may well be
possible to design and build systems in which both neuronal
and synaptic-like responses are provided by phase-change
devices (operating respectively in the accumulation and multi-
level resistance regimes).

Accumulation might also be used to provide a form of serial
non-volatile logic, since accumulator responses, such as those
shown in Figure 3, also perform a serial AND (or NAND) func-
tion. For example a base-2 accumulator provides a 2-input serial
AND operation, a base-4 accumulator a 4-input AND etc. Such
phase-change logic has the advantage of being non-volatile,
but the requirement to enter data serially, to reset the cell after
each logic operation and to have a separate read cycle means
that such devices would not be logic gates in the classical sense.
Nonetheless, their simplicity and efficiency of implementation
may De attractive for certain specialized applications. Interest-
ingly we note that 13-input AND/NAND gates are commonly
available from many semiconductor manufacturers (see e.g.,
ref. [44]) and typically need over 50 CMOS transistors to imple-
ment. A 13-input serial phase-change AND/NAND could how-
ever be realized with a single nanoscale phase-change cell,
using the base-13 accumulator response shown in Figure S3
(Supporting Information).

So far we have considered only integer arithmetic. However,
phase-change based computing with multi-digit numbers is
readily implemented by using separate phase-change cells to
represent powers of the base. For example, in base-10 eight
phase-change cells could represent the integers 0 to 99999999
or the fixed point the number 0 to 9999.9999. Arithmetic com-
putations using such multi-digit and fixed point numbers would
be implemented using the above algorithms on a digit by digit
basis. The use of multi-digit numbers would also allow us to
perform full fractional division using the simple and practicable
two-cell subtraction method described above. For example, sup-
pose we wish to compute the division 9,4+2,0; we use two cells
(A & B) both operating as base-10 accumulators and re-cast the
division as the successive subtraction, re-setting both cells each
time a subtraction has been completed. The number of resets
reveals the quotient, while the remainder will be stored in the
end-state of Cell B (as the number of pulses needed to take Cell
B from its end-state resistance to a resistance below the deci-
sion level). Thus for 9;,4+2,, this two-cell successive subtraction
algorithm vyields the expected result of 4 remainder 1. Now, to
attain a full fractional result we simply ‘move’ the remainder up
to a cell representing the next higher power of the base, thus
our remainder 1 becomes 10, and repeat the two-cell successive
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subtraction process. Thus, we perform 10,y+2;, by successive
subtraction of 10-2, yielding the result 5 and so revealing that
910+210 =4.5.

Finally, in this section, we would like to point out that much
of the related control hardware needed to implement a practi-
cable arithmetic unit capable of implementing the above arith-
metic processes in a self-contained way can also be provided by
phase-change devices. For example, we showed above that the
complement of a number was often required (e.g., to access the
results of additions and multiplications). Such a complement
could be generated and stored in a phase-change cell by a form
of offset copying from the cell containing the number whose
complement is desired. For example, to generate and store the
complement of the (base-10) number 3 contained in a partic-
ular phase-change cell, we utilise a second cell initially in the
reset state; we then apply input pulses to the first cell until it
reaches the SET state, while also applying the same number of
pulses to the second complement cell. To transform the first
cell to the SET state requires 7 pulses, hence the number 7, the
base-10 complement of 3, is generated and stored in the second
complement cell in this example. Negative numbers could be
handled by the equivalent of a sign-bit, for example by using
the SET/RESET state of a sign-cell to represent positive and
negative numbers (or vice-versa).

3. Conclusions

In summary, we have shown that the accumulation regime of
nanoscale phase-change memory type devices can be used to
perform not only the full range of arithmetic operations (addi-
tion, subtraction, multiplication, division), but also carry out
complicated non-binary processing and computation, including
parallel factorization and fractional division. Such arithmetic
computation is carried in a non-von-Neumann architecture in
which processing and non-volatile storage are carried out simul-
taneously by the same nanoscale phase-change cell. Further-
more, computations can be carried out directly in high-order
bases, such as base-10. Thus phase-change accumulator-based
arithmetic computing has the potential to be extremely efficient
when compared to conventional CMOS-based arithmetic proc-
essors. The same accumulation property that endows an arith-
metic capability can also be used to provide a simple form of
non-volatile logic and to implement a simple and efficient form
of nanoscale phase-change neuron. Thus, phase-change devices
potentially offer a range of functionality that goes beyond
simple binary memory to encompass new forms of phase-
change based computing.

4. Experimental Section

Phase-change pseudo-devices comprising e-beam lithographed top
electrodes fabricated on top of a continuous 10 nm thin film of Ge,Sb,Tes
(GST) sandwiched between two conductive sp-2 rich a-C layers, were
used, as shown in Figure 2a (and in Figure Sla of the Supporting
Information). The lower a-C layer was prepared to be highly conducting
(6210%2 Q'm™") and in combination with a Ti layer provides the bottom
electrode. The top a-C layer provided environmental protection for the
GST and was also conducting, but less so than the bottom a-C layer
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(0=50 Q'm™). The basic Ti/a-C/GST/a-C structure was similar to that
used successfully in several studies to demonstrate scanning probe-
based storage using phase-change materials/'®'®l and was prepared by
DC/RF magnetron sputtering. Note that as a consequence of additional
series resistances caused by the inclusion of the a-C layers, the
resistance difference between amorphous (RESET) and crystalline (SET)
states in the pseudo-devices was substantially smaller than that seen in
commercial PCM devices. On top of the Ti/a-C/GST/a-C structure an
array of evenly distributed, 15-nm-thick Pt dots were fabricated using
standard e-beam (NanoBeam nB3 system) lithographic patterning and
metal sputtering. A 5-nm Ti layer was used as an adhesion layer between
Pt dots and the a-C capping layer and the resulting 20-nm-thick Pt/Ti
combination gave an excellent Ohmic contact. The Pt/Ti dots served as
a fixed top electrode and were typically 100 nm in size (diameter). The
Pt/Ti electrodes were contacted using a conductive-diamond AFM tip
(Bruker AFM probes) using a Bruker Innova SPM system with C-AFM
capability. The conductive-diamond tips were durable and had a very
high-current carrying capacity (unlike metal-coated C-AFM tips).

Further details of all experimental methods (and of the theoretical
and computational model used for the simulation results of Figure 1)
are given in the Supporting Information.

Supporting Information

Supporting Information is available from the Wiley Online Library or
from the author.
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