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3v method for specific heat and thermal conductivity measurements
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Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
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We present a 3v method for simultaneously measuring the specific heat and thermal conductivity
of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The
specimen in this method needs to be electrically conductive and with a temperature-dependent
resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure
its thermal response. With this method, we have successfully measured the specific heat and thermal
conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal
quantities of tiny carbon nanotube bundles some of which are only;1029 g in mass. ©2001
American Institute of Physics.@DOI: 10.1063/1.1378340#

I. INTRODUCTION

Many experimental methods have been developed over
the past centuries to measure the fundamental thermal prop-
erties of materials. One important class among them, the so-
called 3v method, uses a narrow-band detection technique
and therefore gives a relatively better signal-to-noise ratio. In
this method, either the specimen itself serves as a heater and
at the same time a temperature sensor, if it is electrically
conductive and with a temperature-dependent electric resis-
tance, or for electrically nonconductive specimen, a metal
strip is artificially deposited on its surface to serve both as
the heater and the sensor. Feeding an ac electric current of
the formI 0 sinvt into the specimen or the metal strip creates
a temperature fluctuation on it at the frequency 2v, and ac-
cordingly a resistance fluctuation at 2v. This further leads to
a voltage fluctuation at 3v across the specimen. Corbino1 is
probably the first to notice that the temperature fluctuation of
an ac heated wire gives useful information about the thermal
properties of the constituent material. Systematic investiga-
tions of the 3v method were carried out mainly during the
1960’s2–4 and in the last ten years,5–10 which made the
method practical. However, in the previous studies the heat-
conduction equation was solved under the approximations
either only for the high frequency limit,2,3,10 or only for the
low frequency limit.5,7,8 With those approximations one lost
either the information on the thermal conductivity or the in-
formation on the specific heat of the specimen.

In this article, we present an explicit solution for the
one-dimensional~1D! heat-conduction equation. With this
solution and by using a modern digital lock-in amplifier, we
are able to obtain both the specific heat and the thermal con-
ductivity of a rod- or filament-like specimen simultaneously.
We have tested this method on platinum wire specimens.
Correct values of specific heat, thermal conductivity, and
Wiedemenn–Franz ratio were obtained. With this method,
we have also obtained the thermal properties of carbon nano-
tube bundles some of which are only 1029 g in mass.

In Sec. II, we will present an explicit solution for the 1D
heat-conduction equation. In Sec. III, we will discuss the
high and low frequency limits of the solution, then compare
them with the ones previously obtained by others at these
limits. An error analysis will be given in Sec. IV, for the case
of just keeping the first term of the solution. In Sec. V, we
will discuss the effects of radial heat loss. And, in Sec. VI,
we will show our experimental test of the method on plati-
num and carbon nanotube materials. We will also share with
the readers the tips of using this 3v method.

II. THE 1D HEAT CONDUCTION EQUATION AND ITS
SOLUTION

We consider a uniform rod- or filament-like specimen in
a four-probe configuration as for electrical resistance mea-
surement~Fig. 1!. The two outside probes are used for feed-
ing an electric current, and the two inside ones for measuring
the voltage across the specimen. Differing from being a pure
electrical resistance measurement, however, here it requires
that ~i! the specimen in between the two voltage probes be
suspended to allow the temperature fluctuation,~ii ! all the
probes have to be highly thermal conductive, to heat sink the
specimen at these points to the sapphire substrate, and~iii !
the specimen has to be maintained in a high vacuum and the
whole setup be heat shielded to the substrate temperature to
minimize the radial heat loss through gas convection and
radiation. In such a configuration and with an ac electrical
current of the formI 0 sinvt passing through the specimen,
the heat generation and diffusion along the specimen can be
described by the following partial differential equation and
the initial and boundary conditions:

rCp

]

]t
T~x,t !2k

]2

]x2 T~x,t !

5
I 0

2 sin2 vt
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H T~0,t !5T0

T~L,t !5T0

T~x,2`!5T0 ,
~2!

whereCp , k, R, andr are the specific heat, thermal conduc-
tivity, electric resistance and mass density of the specimen at
the substrate temperatureT0 , respectively.R85(dR/dT)T0

.
L is the length of the specimen between voltage contacts, and
S the cross section of the specimen. We have assumed that
the electric current was turned on att52`.

Let D(x,t) denote the temperature variation fromT0 ,
i.e., D(x,t)5T(x,t)2T0 , Eqs.~1! and ~2! then become

]

]t
D~x,t !2a

]2

]x2 D~x,t !2c sin2 vt D~x,t !5b sin2 vt,

~3!

H D~0,t !50
D~L,t !50
D~x,2`!50,

~4!

where a5 k/rCp is the thermal diffusivity, and b
5 I 0

2R/rCpLS, c5 I 0
2R8/rCpLS.

Using the impulse theorem,D(x,t) can be represented as
the integral of the responses of the specimen to the instant
‘‘force’’ b sin2 vt at each time interval:

D~x,t !5E
2`

t

z~x,t;t!dt, ~5!

wherez(x,t;t) satisfies

]z

]t
2a

]2z

]x22c sin2 vt z50, ~6!

H z~0,t !50
z~L,t !50
z~x,t10!5b sin2 vt.

~7!

z(x,t;t) can be expanded in the Fourier series:

z~x,t;t!5 (
n51

`

Un~ t;t!sin
npx

L
. ~8!

Substituting Eq.~8! into Eq. ~6!, we have

(
n51

` FdUn

dt
1S n2

g
2c sin2 vt DUnGsin

npx

L
50, ~9!

whereg[L2/p2a is the characteristic thermal time constant
of the specimen for the axial thermal process.

The term c sin2 vt can be neglected ifn2/g@c, or
equivalently

I 0
2R8L

n2p2kS
!1. ~10!

Condition~10! means that the heating power inhomoge-
neity caused by resistance fluctuation along the specimen
should be much less than the total heat power. This condition
is usually held. For example, in a typical measurement one
could have I 0510 mA, R850.1V/K, L51 mm, S
51022 mm2, andk5100 W/m K, the left-hand side of Eq.
~10! is then about 1023 even for then51 case.

After dropped off thec sin2 vt term, the solution of the
ordinary differential Eq.~9! is

Un~ t;t!5Cn~t!e2 ~n2/g!(t2t), ~11!

whereCn(t) can be determined using the initial condition in
Eq. ~7!, together with the relation (n51

` $2@1
2(21)n#/np% sinnpx/L 51 for 0,x,L:

Cn~t!5
2b@12~21!n#

np
sin2 vt. ~12!

Using Eqs.~11! and ~12!, Eq. ~8! becomes

z~x,t;t!

5 (
n51

`

sin
npx

L

2b@12~21!n#

np
sin2 vt e2 ~n2/g!(t2t).

~13!

Substituting Eq.~13! into Eq. ~5! and remembering that
D(x,t)5T(x,t)2T0 , we obtain the temperature distribution
along the specimen:

T~x,t !2T05D0(
n51

`
@12~21!n#

2n3

3sin
npx

L F12
sin~2vt1fn!

A11cot2 fn
G , ~14!

where cotfn52vg/n2, andD052gb/p 5 2I 0
2R/(pkS/L) is

the maximum dc temperature accumulation at the center of
the specimen.D0 is only k dependent. The information ofCp

is included in the fluctuation amplitude of the temperature
around the dc accumulation.

Figure 2 illustrates how the amplitude of such a tempera-
ture fluctuation depends on the frequency of the electric cur-
rent. The amplitude reaches the maximum asvg→0, i.e.,
when the thermal wavelengthl@L ~wherel is defined as
l5Aa/2v!. But it shrinks to zero along the line of the av-
eraged temperature accumulation whenvg@1 (l!L).

The temperature fluctuation will result in a resistance
fluctuation, which can be calculated as

dR5
R8

L E
0

L

@T~x,t !2T0#dx. ~15!

FIG. 1. Illustration of the four-probe configuration for measuring the spe-
cific heat and thermal conductivity of a rod- or filament-like specimen is
shown. The specimen is heat sunk to the sapphire substrate through the four
electric contacts, but the part in between the two voltage contacts needs to
be suspended, to allow the temperature variation. A high vacuum is needed
and a thermal shielding is preferred to eliminate the radial heat current from
the specimen to the environment.
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Using Eq.~14! and the relation*0
L (sinnpx/L) dx5@12

(21)n# L/np, the resistance fluctuation can be expressed as

dR5R8D0(
n51

`
@12~21!n#2

2pn4 F12
sin~2vt1fn!

A11cot2 fn
G . ~16!

As a product of the total resistanceR1dR and the cur-
rent I 0 sinvt, the voltage across the specimen contains a 3v
componentV3v(t). Obviously, then52 term inV3v(t) au-
tomatically vanishes. If only taking then51 term, which
introduces a relative error of the order;324 at low frequen-
cies, we have

V3v~ t !'2
2I 0

3LRR8

p4kSA11~2vg!2
sin~3vt2f!, ~17!

where we have redefined the phase constantf5 p
2 2f1 so

that

tanf'2vg. ~18!

If using the root-mean-square~rms! values of voltage
and current as what the lock-in amplifier gives, Eq.~17! be-
comes~hereafter we always letV3v denotes the rms value of
V3v(t), andI denotes the rms value ofI 0 sinvt):

V3v'
4I 3LRR8

p4kSA11~2vg!2
. ~19!

By fitting the experimental data to this formula, we can
get the thermal conductivityk and thermal time constantg of
the specimen. The specific heat can then be calculated as

Cp5p2gk/rL2. ~20!

The following alternative form makes it more clear how
the 3v voltage depends on the dimensions of the specimen:

V3v'
4I 3rere8

p4kA11~2vg!2 S L

SD 3

, ~21!

where re is the electrical resistivity of the specimen,re8
[(dre /dT).

III. THE HIGH AND LOW FREQUENCY LIMITS

Sometimes the measurement has to be performed at the
low frequency limitvg→0 (l@L), e.g., when the speci-
men is extremely thin and long. In this case,V3v is nearly
frequency independent. To an accuracy of roughly 324, it
takes the form

V3v'
4I 3RR8L

p4kS
5

1

p3 IR8D0 ~vg→0!. ~22!

If the measurement is performed at the low frequency
limit, one can only get the thermal conductivity of the speci-
men, but loses the information on specific heat, as in Cahill’s
treatment for a two-dimensional heat diffusion problem.8

At the high frequency limitvg→` (l!L), on the
other hand, Eqs.~17!–~21! become quite inaccurate due to
truncating then.1 terms in Eq.~16!. In this limit, all thefn

approach to zero, and the amplitude of the summation over
the time-dependent terms in Eq.~16! eventually becomes
(n51,odd

` n225p2/8. Therefore,V3v should be

V3v5
I 3RR8

4vrCpLS
~vg→`!, ~23!

which is exactly the same as Holland’s result.2 Simply trun-
cating then.1 terms at thevg→` limit will result in a
coefficient of 2/p2, instead of 1/4, forV3v in Eq. ~23!.

At the high frequency limit, one can only get the specific
heat of the specimen, but loses the information on its thermal
conductivity.

FIG. 2. Temperature fluctuation along the specimen under a driving ac
currentI 0 sinvt is shown. The fluctuation amplitude is marked as shadowed
area. It reaches the maximum at the limitvg→0, and shrinks to a line as
vg→`. The line in the middle of the fluctuation range denotes the dc
temperature accumulation along the specimen, which reaches the maximum
value ofD0 ~defined in the text! at the center of the specimen.

FIG. 3. The errors ofV3v caused by truncating then.1 terms in Eq.~16!
are shown. Curve A represents the exact solution of the 3v voltage ampli-
tude. Curve B is the 3v voltage of then51 term alone. The difference
between them is nearly a constant at low frequencies, plotted as curve A–B.
The relative error ofV3v increases withv, illustrated as curve~A–B!/A.
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IV. ERROR ANALYSIS

The error ofV3v caused by truncating then.1 terms in
Eq. ~16! is illustrated in Fig. 3. Curve A is the normalized
fluctuation amplitude of Eq.~16! containing terms up ton
59, taken from a numerically generated time sequence. It
almost represents the exact solution. Curve B is the fluctua-
tion amplitude of the first term alone. It appears that the
difference between A and B~shown as curve A–B in Fig. 3!
is nearly a constant in the frequency range 0,2vg,10. It
approaches to(n53,odd

` n24'0.014 asv→0. However, be-
causeV3v decreases with frequency, the relative error ofV3v

increases withv ~illustrated as curve~A–B!/A in Fig. 3!.
The relative error of tanf in Eq. ~18! should also in-

crease with frequency. Indeed, the experimental data of tanf
curve away from linearity at high frequencies. By fitting the
data to Eq.~18!, the high frequency inaccurate side of Eq.
~18! provides more weight on the slope, so that one will get
a noticeably smallerg than the true value.

The case of using Eq.~19! is fortunately just the oppo-
site. The amplitude ofV3v is relatively large at the low fre-
quency side where Eq.~19! is very accurate. If we fit curve A
to Eq. ~19! in the frequency range 0,2vg,4, the obtained
k is only 3.5% higher, andg is 2% lower than the true
values.Cp is then only 1.4% higher than the true value.

Because the error in Eq.~19! is nearly frequency inde-
pendent at low frequencies~curve A–B in Fig. 3!, it can be
further and easily reduced by shifting the fitting curve up-
wards by a small amount, i.e., fitting the data to the follow-
ing form:11

V3v'
4I 3LRR8

1.01p4kSF 1

A11~2vg!2
10.01G ~2vg<4!.

~24!

Fitting curve A to Eq.~24! in the frequency range 0
,2vg,4 yields k, g, and Cp that are all within 0.1% of
their true values. In this case, the error introduced by trun-
cating then,1 terms becomes negligibly small comparison
with errors of other sources, such as from the size estimation.

If one truncates then.1 terms in Eq.~14! to calculate
the temperature fluctuation, the error will be more significant
than truncating then.1 terms in Eq.~16!. This is because
the summation converges asn23 in Eq. ~14!, not asn24 in
Eq. ~16!.

V. RADIAL HEAT LOSS

In the previous discussion, we have neglected the radial
heat loss through radiation. Such heat loss per unit length
from a cylindrical rod of diameterD to the environment of
temperatureT0 can be expressed as

W~x,t !5pesD@T4~x,t !2T0
4#'4pesDT0

3D~x,t !,
~25!

where s55.6731028 W/m2K4 is the Stefan–Boltzmann
constant, ande is the emissivity.

Considering such heat loss, Eqs.~3! and ~4! can be re-
written as

]

]t
D~x,t !2a

]2

]x2 D~x,t !1~g2c sin2 vt !D~x,t !

5b sin2 vt, ~26!

H D~0,t !50
D~L,t !50
D~x,2`!50,

~27!

whereg5 16esT0
3/rCpD. Equation~9! then becomes

(
n51

` FdUn

dt
1S n2

g
1g2c sin2 vt DUnGsin

npx

L
50. ~28!

Now if we truncate then.1 terms again and replace the
factor 1/g 1g with 1/gap, Eq. ~28! will take the similar form
as Eq.~9!. The final approximation solution is therefore

V3v'
4I 3LRR8

p4SkapA11~2vgap!
2

, ~29!

tanf'2vgap, ~30!

wherekap5(11gg)k is the apparent thermal conductivity,
andgap5g/(11gg) is the apparent thermal time constant of
the specimen. The apparent dc temperature accumulation is
D0

ap5D0 /(11gg) at the center of the specimen.
Obviously, radiation heat loss can be neglected if

gg!1. ~31!

For a cylindrical rod, condition ~31! becomes
16esT0

3L2/p2kD !1, which means that the radiation power
inhomogeneity caused by the temperature fluctuation along
the specimen should be much less than the axial heat current
or the total heating power.

Condition ~31! is usually held for measurements per-
formed below room temperature. For example, if one has a
specimen of the sizeL51 mm andD51022 mm, and as-
sumingk5100 W/m K, T05300 K, the productgg is only
around 2.531023 even if using the emissivity of a black
body.

However, for specimens of significantly longer or thin-
ner, or if the measurement is performed at significantly
higher temperatures, condition~31! will be violated. In these
cases, the apparent thermal conductivity is larger than the
actual value by an amount due to the radial heat loss, for
cylindrical rod which is

kap5k~11gg!5k1
16esT0

3L2

p2D
. ~32!

If one knows the emissivity, then bothk andCp of the
specimen can be calculated. Otherwise if the emissivity is
unknown, one will lose the information ofk. Nevertheless,
one can still getCp of the specimen. The reason is, by sub-
stitutingkap andgap into Eq.~20! as if there is no radial heat
loss, the (11gg) factors inkap and ingap just cancels out,
which yields the correct value ofCp :

Cp5p2gapkap/rL2[p2gk/rL2. ~33!
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Although this analysis is made for cylindrical rod, the
conclusions are also revelatory for specimens of other
shapes. One can easily deduce the factorgg for particular
specimens if needed.

Another kind of radial heat loss, the heat loss through
gas convection, also introduces a linear-term correction to
the heat conduction equation. The final solution is therefore
the same as Eqs.~29! and ~30! except that nowg
5 4h/rCpD for the cylindrical specimen of diameterD
~whereh is the surface thermal conductivity!. Similar to the
case of radiation heat loss, one needs to knowh before being
able to calculatek. But one can still obtainCp of the speci-
men through Eq.~33! without knowing h. This has been
proven to be true experimentally, even when the heat loss
through gas convection is much larger than the axial thermal
current~the experimental data will be shown in Fig. 7!.

For eliminating the heat loss through gas convection,
one simply needs a high vacuum. For eliminating radiation
heat loss, however, simply using a radiation shielding at the
substrate temperatureT0 would be useless because it is the
radiation power inhomogeneity along the specimen that mat-
ters. Nevertheless, we feel that a simple heat shielding atT0

will at least help minimize the static radial heat current from
the specimen to the environment, especially for measure-
ments performed above room temperature. Otherwise, such
heat current could cause the temperature of the specimen to
be inaccurate and the whole heat conduction processes be-
comes complicated.

VI. EXPERIMENTAL TESTS AND TIPS

We have tested this 3v method on two kinds of speci-
mens: platinum wires and bundles of multiwall carbon nano-
tubes, by just using the approximation solution~19!. The
electrical resistance of the former specimen has a positive
temperature coefficient, and the latter; a negative one. Within
appropriate ranges of frequency and current, we do find that

V3v}I 3 and V3v}1/A11(2vg)2. For the platinum speci-
men, the apparent specific heat and thermal conductivity as
well as the Wiedemenn–Franz ratio agree with the standard
data over the entire temperature range measured~10–320 K!.

Figure 4 shows the block diagram for the measurement.
A digital lock-in amplifier such as a SR830 or SR850 made
by Stanford Research Inc. was selected. All the filters on the
lock-in were turned off, and the dc coupled input mode was
selected, to ensure the observation of a true frequency depen-
dence ofV3v . Before measuring the 3v signal, the phase of
the lock-in amplifier was adjusted to zero according to the
1v voltage component. The phase angle ofV3v is then2f
if R8,0 or 180°2f if R8.0 according to Eq.~17!. We
used a simple electronic circuit~the lower panel of Fig. 4! to
convert the 1v sine wave voltage from the sine out of the
lock in to an ac current, and then we fed the current into the
specimen. The 3v component in the current was below 1024

compared to its 1v component, checked by a HP89410A
spectrum analyzer. Because the 3v voltage signal is deeply
buried in the 1v voltage signal, a certain amount of dynamic
reservation is required for the lock in if, in order to keep the
simplicity of this method, one is not using a bridge circuit to
cancel out the 1v signal. We kept the dynamic reservation
unchanged relative to the total magnification of the lock in
during the entire measurement.

There are two ways to perform the measurement. In the
first, the substrate of the specimen is maintained at fixed
temperatures, then the frequency dependence ofV3v is mea-
sured. In this way, we can check theI 3 and the
1/A11(2vg)2 dependencies ofV3v as well as the relation
tanf52vg.

BecauseV3v}I 3, one will get a much larger signal by
using a largerI . However, there are three reasons for not
using a very largeI . First, it is required by condition~10!.
Second, radiation heat loss will be significant when the tem-
perature modulation is large, as condition~31! indicates.
Third, excessive heat accumulation on the specimen would
even create a considerably large temperature gradient at the
silver paste contacts, which might violate the boundary con-
dition in Eq.~2!. In all the cases, the expected relations such
as V3v}I 3 will not be held. On the other side, the relation
will also be violated ifI is too small so thatV3v becomes
comparable to, or even smaller than the spurious 3v signals
that come from the current or other sources. In our measure-
ment, the total heating power was maintained such that the
temperature modulation along the specimen was around 1 K.
Nevertheless, if the 3v voltage is too small to measure then
one has to increase the current for creating a larger tempera-
ture fluctuation. In this case, the actual~averaged! tempera-
ture of the specimen has to be corrected afterwards by com-
paring the resistance of the specimen measured with the
larger current and that measured with a much smaller one.

From Eq.~21!, a longer and thinner specimen also gives
a larger signal. However, a largerL corresponds to a larger
thermal time constantg (g}L2), and hence, a lower fre-
quency window for measurement. In practice, it will be in-
convenient to perform the measurement below 1 Hz. A
larger length and a smaller cross section or diameter could
also violate the conditions~10! and~31!, and thus violate the

FIG. 4. Block diagram of the measurement is presented. We chose a digital
lock-in amplifier SR830 or SR850 to measure the 3v voltage. The 1v
voltage from the sine out of the lock in was boosted into an ac current by a
simple electronic circuit~lower panel!. It was then fed into the specimen.
The feed-back resistor R* should be nearly temperature independent to pre-
vent it from generating a 3v component in the current.
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expectedI 3 and the 1/A11(2vg)2 dependencies ofV3v .
In the second way of measurement, the temperature of

the substrate is slowly ramped up or down at a fixed rate,
meanwhile the working frequency of the lock-in amplifier is
switched between a few set values. The maximum working
frequency is adjusted by keeping 2vg,4 ~i.e., f,76° ac-
cording to Eq.~18!!. And, the electric current is adjusted
roughly to maintain a fixed dc temperature accumulation
~i.e., ;1 K!. The whole process, including the temperature
ramping, parameters adjusting, and frequency switching, are
all controlled by a personal computer.

For the platinum specimen, we chose a wire of diameter
D520mm and lengthL58 mm. We found that the thermal
time constantg of the specimen varied from 0.005 s21 at 10
K to ;0.2 s21 at room temperature, so that the working fre-
quencies were chosen to be between 1 and 80 Hz. Shown in
Fig. 5~a! is the current dependence ofV3v at 25 K, demon-
strating anI 3 dependence in a mediate current range. Figures
5~b! and 5~c! show the frequency dependencies of the ampli-
tude and the phase angle ofV3v at 25 K, compared with the
predicted functional forms~the solid lines!. By fitting the
data in Fig. 5~b! to Eq. ~19!, we obtained the thermal con-
ductivity k @Fig. 5~d!, open circles# and the thermal time
constantg. The thermal diffusivity and the specific heat of
the specimen can be obtained by using the relationsg
5L2/p2a and a5k/rCp . The results are shown in Figs.

5~e! and 5~f! as open circles.Cp thus obtained agrees well
with the standard data for platinum12 @the solid squares in
Fig. 5~f!#.

The thermal conductivity of our platinum wire shows a
less pronounced peak at low temperatures compared to that
of high purity platinum. Sincek depends largely on the pu-
rity, structural perfection, and even the size of the specimen,
we think that thek data we obtained reflect the true thermal
conductivity of our platinum wire. In fact, the Wiedemenn–
Franz ratio of the specimen deduced from the thermal con-
ductivity and the electrical resistivity, or more directly, de-
duced from the thermal conductance and the electrical
resistance, fits the case of pure but not totally defect-free
metals,13 as shown in Fig. 6. The Wiedemenn–Franz ratio is
found to be;2.5331028WV /K2 at 290 K. It is slightly
larger than the free-electron Lorenz number 2.45
31028 WV /K2, and is rather close to 2.631028 WV/K2,
the reported value in literature for platinum.14

Let us now examine the effect of radial heat loss through
gas convection. The data in Fig. 5 were taken in a high
vacuum where such heat loss was virtually absent, as that
changing the vacuum pressure by a factor of 2 yielded a
samek. Shown in Figs. 7~a!–7~c! are two sets of data taken
on another platinum specimen at two different vacuum pres-
sures. The circles represent the data taken in a vacuum where
radial heat loss emerged but was not severe~indicated by the
slightly positive slope ofk at at high temperatures!. During
one of the warming-up measurements, however, we intro-
duced radial heat loss by destroying the vacuum of the sys-
tem. After that, spurious larger thermal conductivity and dif-
fusivity of the specimen were obtained, shown as the squares
in Figs. 7~a! and 7~b!. The radial heat current reached several
times larger than the axial one at room temperature, as indi-
cated in Fig. 7~a!. Nevertheless, the specific heat deduced
from k and a was quite insensitive to the radial heat loss
@Figs. 7~c!#. The reason has been explained in Sec. V.

After all, let us check if conditions~10! and ~31! were
satisfied. If takingn51, we had I 0

2R8L/n2p2kS;1025.
Therefore, condition~10! was well satisfied. For condition
~31!, assuming an emissivitye51 for our platinum wire
leads tog'0.44 s21 at 300 K. On the other hand,g ~actually,

FIG. 5. Experimental test of the 3v method on a platinum wire of 20mm in
diameter is shown.~a! The current dependence ofV3v . The open circles are
the measured data at 25 K and 2 Hz, and the solid line is the predicted
relation V3v}I 3. ~b! The frequency dependence ofV3v at 25 K ~open
circles!. The solid line is the predicted relationV3v}1/A11(2vg)2. ~c!
The frequency dependence of the phase angle ofV3v at 25 K ~open circles!.
The obtained thermal conductivityk, thermal diffusivitya, and specific heat
Cp of the platinum specimen are plotted as open circles in~d!, ~e!, and~f!,
respectively. Also shown in~d!, ~e!, and~f! as solid squares are the standard
data of platinum from literature~Ref. 12!. The difference ink and a be-
tween our data and the standard ones should reflect the difference in purity
and/or structural perfection between the platinum specimens of different
sources.

FIG. 6. The Wiedemenn–Franz ratioLe of our platinum specimen com-
pared with that of usual metals with different purity is shown. The result
indicates that the platinum wire used in this experiment is pure but not
totally defect free. The room temperature Wiedemenn–Franz ratio of the
platinum wire is about 2.5231028 WV/K2, which is in good agreement
with the reported value of 2.631028 WV/K2 in literature ~Ref. 14!. The
Lorenz number of free electron gas isL052.4531028 WV/K2, plotted as
the dashed line. Note that for platinum, the Debye temperatureu is 240 K.
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gap! deduced from the measurement was;0.2 s. Therefore,
gg'0.088. In the real case, the productgg should be much
smaller than 0.088, because the emissivity of a shiny metal is
usually much less than unity. Therefore, condition~31!
should also be well satisfied.

We have also applied the 3v method to measure thek
andCp of multiwall carbon nanotube~MWNT! bundles who
have a negativeR8 ~Ref. 15!. MWNT is a highly anisotropic
material both in geometry and in thermal conductivity, ow-
ing to its strong in-planesp2 bonding and the weak interwall
van der Waals bonding. Its macroscopic length against the
nanometer-sized diameter overall ensures a much shorter
thermal time constant in the radial direction than in the axial
direction. We believe this conclusion is also true for a bundle
of MWNTs. Therefore the heat conduction can be regarded
as a 1D problem. For MWNTs there are noCp and k data
from other sources available for comparison. Nevertheless,
the obtained frequency and current dependencies ofV3v

were all in good agreement with Eq.~19! ~Fig. 8!, which
guarantees the reliability ofk and Cp thus obtained. For a
carbon nanotube bundle ofL51 mm and D510mm,
I 0

2R8L/p2kS was less than 1023 at temperatures above 60

K, and was about 0.08 at 10 K. In addition, the productgg
was below 431023 in the whole temperature range investi-
gated ~estimated using the emissivity of a black body!.
Therefore, both conditions~10! and ~31! were satisfied if
considering the bundle as a unitary object. The nanotubes
inside the bundle were actually ‘‘self-shielded’’ by the out-
most ones if examining them individually, which might ef-
fectively eliminate the radial heat loss.

For a carbon nanotube bundle of 1mm in diameter and 1
mm in length, its mass is only around 1029g, far less than
the minimum amount of mass~typically in mg! required in
many other kinds ofCp measurement.

VII. DISCUSSION

We have explored a 3v method for measuring the ther-
mal conductivity and specific heat of a rod or filament-like
specimen. By fitting the frequency-dependent 3v voltage
data to Eq.~19! within the frequency range 0,2vg,4, we
can obtaink andCp of the specimen to an accuracy of 2%–
4%. For achieving a higher accuracy, one can fit the data to
Eq. ~24!. The presence of radial heat loss will result in a
larger apparent thermal conductivity. ButCp obtained by this
method is very much insensitive to such heat loss and thus
maintains reliability. A successful measurement relies on

FIG. 7. The effect of radial heat loss through air convection is presented.
The circles represent the data taken in a vacuum where radial heat loss was
not significant. In one warming-up run of the measurement, radial heat loss
was triggered on aboveT* by destroying the vacuum of the system. The
heat loss resulted in a spurious larger thermal conductivity and diffusivity
for the specimen@the squares in~a! and~b!#. But, as predicted by Eq.~33!,
the specific heat deduced from them was relatively insensitive to such heat
loss @the squares in~c!#.

FIG. 8. Experimental test of the 3v method on multiwall carbon nanotube
bundles at 50 K is shown.~a! The current dependence of the 3v voltage
measured at 10 Hz compared with the predicted formV3v}I 3 ~the solid
line!. ~b! The frequency dependence ofV3v compared with the predicted
relation V3v}1/A11(2vg)2. ~c! The frequency dependence of the phase
angle ofV3v compared with the predicted relation tanf}v. The tempera-
ture dependencies of the thermal conductivity, thermal diffusivity and spe-
cific heat of the material have already been published elsewhere~Ref. 15!.

3002 Rev. Sci. Instrum., Vol. 72, No. 7, July 2001 Lu, Yi, and Zhang



properly choosing the dimensions of the specimen so that
one can have a large enough 3v voltage, yet maintain a
convenient working frequency range and keep condition~10!
@and condition~31!, if necessary# satisfied.
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