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3w method for specific heat and thermal conductivity measurements

L. Lu,® W. Yi, and D. L. Zhang
Laboratory of Extreme Conditions Physics, Institute of Physics and Center for Condensed Matter Physics,
Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

(Received 23 February 2000; accepted for publication 16 April 2001

We present a @ method for simultaneously measuring the specific heat and thermal conductivity

of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The
specimen in this method needs to be electrically conductive and with a temperature-dependent
resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure
its thermal response. With this method, we have successfully measured the specific heat and thermal
conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal
quantities of tiny carbon nanotube bundles some of which are o9 °g in mass. ©2001
American Institute of Physics[DOI: 10.1063/1.1378340

I. INTRODUCTION In Sec. Il, we will present an explicit solution for the 1D

heat-conduction equation. In Sec. lll, we will discuss the

Many experimental methods have been developed oVefjgh and low frequency limits of the solution, then compare
thg past centuries to measure the fundamental thermal progsem with the ones previously obtained by others at these
erties of materials. One important class among them, the Squits An error analysis will be given in Sec. IV, for the case

called 3w method, uses a narrow-band detection techniquey jyst keeping the first term of the solution. In Sec. V, we

and therefore gives a relatively better signal-to-noise ratio. In,.i| discuss the effects of radial heat loss. And, in Sec. VI,

this method, either the specimen itself serves as a heater aggl il show our experimental test of the method on plati-
at the same time a temperature sensor, if it is electrically, ;) and carbon nanotube materials. We will also share with
conductive and with a temperature-dependent electric resispq readers the tips of using this»amethod.

tance, or for electrically nonconductive specimen, a metal

strip is artificially deposited on its surface to serve both as

the heater and the sensor. Feeding an ac electric current of

the forml, sinwt into the specimen or the metal strip creates!!: THE 1D HEAT CONDUCTION EQUATION AND ITS

a temperature fluctuation on it at the frequenay, 2and ac- SOLUTION

cordingly a resistance fluctuation ab2 This further leads to

a voltage fluctuation at@ across the specimen. Corbirie
probably the first to notice that the temperature fluctuation o
an ac heated wire gives useful information about the therm

. . . L , g an electric current, and the two inside ones for measuring
properties of the constituent material. Systematic investigag, voltage across the specimen. Differing from being a pure

tlons'of_‘tlhe B .method were carrled_?out m'amly during the electrical resistance measurement, however, here it requires
1960'¢ anq in the last tgn yea?s, .Wh'Ch ”?ade the that (i) the specimen in between the two voltage probes be
method _practlcal. _However, in the previous studies t_he h_eats-uspended to allow the temperature fluctuatioi, all the
cpnductlon equation was solved Q”d‘;rmthe apprommaﬂonBrobes have to be highly thermal conductive, to heat sink the
either only for t_he_ ?;ggh fr_equency limft? or qnly for the specimen at these points to the sapphire substrate(iiand
low frequency limit”"“With those approximations one lost the specimen has to be maintained in a high vacuum and the
either .the information on the thermal condyctivity or the in'whole setup be heat shielded to the substrate temperature to
format|or_1 on the specific heat of the specimen. minimize the radial heat loss through gas convection and
In.th|s grtlcle, we present an explicit s_olutlon_ for the radiation. In such a configuration and with an ac electrical
one-tﬁmensmnélD} heat-conduct!o_n equat!on. W'.th this current of the forml, sinwt passing through the specimen,
solution and by using a modern digital lock-in amplifier, we the heat generation and diffusion along the specimen can be

- : ) . . "Yescribed by the following partial differential equation and
ductivity of a rod- or filament-like specimen simultaneously. the initial and boundary conditions:

We have tested this method on platinum wire specimens.

Correct values of specific heat, thermal conductivity, and P
Wiedemenn—Franz ratio were obtained. With this methOdep—T(X,t)—K—ZT(X,t)
we have also obtained the thermal properties of carbon nano- * 9t IX

tube bundles some of which are only Ty in mass.

We consider a uniform rod- or filament-like specimen in
four-probe configuration as for electrical resistance mea-
%uremen(Fig. 1). The two outside probes are used for feed-

12 sir? ot
= — +R’ —
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0 L X wherey=L?/m?a is the characteristic thermal time constant
o of the specimen for the axial thermal process.
The term csirPwt can be neglected ih?/y>c, or
equivalently
12R’L
sapphire substrate 272KS <L (10

FIG. 1. lllustration of the four-probe configuration for measuring the spe- i ; ; _
cific heat and thermal conductivity of a rod- or filament-like specimen is Condition(10) means that the heatlng power InhomOge

shown. The specimen is heat sunk to the sapphire substrate through the fdlfity caused by resistance fluctuation along the_ speci_men
electric contacts, but the part in between the two voltage contacts needs ®hould be much less than the total heat power. This condition
be suspended, to allow the temperature variation. A high vacuum is needgd usually held. For example, in a typical measurement one
and a thermal shielding is preferred to eliminate the radial heat current fro _ ’_ _
the specimen to the environment. n&OUqu have 1,=10mA, R’'=0.1Q/K, L=1 mm, S
=10 ?mn?, and k=100 W/mK, the left-hand side of Eq.
(10) is then about 10° even for then=1 case.

T(OH) =T, After dropped off thec sirf wt term, the solution of the
T(L,H)=T, (2)  ordinary differential Eq(9) is
T 1 - = T 1 — —_
(X, =)=To Un(t; 1) =Cp(r)e™ (P07, (11)
whereC,,, «, R, andp are the specific heat, thermal conduc-

tivity, electric resistance and mass density of the specimen 4¢nereCn(7) can be determined using the initial condition in

the substrate temperatufg, respectivelyR’ = (dR/dT),.  E9 (7), together with the relation = _,{2[1

_(_1\n H — .
L is the length of the specimen between voltage contacts, and( 1)")inm} sinnax/l =1 for O<x<L:

S the cross section of the specimen. We have assumed that 2b[1—(—1)"]
the electric current was turned ontat —oo. Ch(m)= Tsin2 wT. (12
Let A(x,t) denote the temperature variation frofg,
i.e., A(x,t)=T(x,t) = To, Egs.(1) and(2) then become Using Egs.(11) and(12), Eq. (8) becomes
d 9? :
SAXD—as AN -CsiP ot AxD=bsiPwet, LT
- nwx 2b[1—(—1)"
@ = sin - [ n( /] Sif wr e~ (=7,
A(Ot)=0 n=1 m
A(L,t)=0 (4) (13
A(X,—»)=0,

Substituting Eq(13) into Eq.(5) and remembering that
where a= k/pC, is the thermal diffusivity, andb  A(X,t)=T(x,t)—To, we obtain the temperature distribution
= ISR/pCpLS, c= IgR’/pCpLS. along the specimen:

Using the impulse theorem,(x,t) can be represented as w .
the integral of the responses of the specimen to the instant T, —To=A [1-(—1)"]
“force” b sir’ wt at each time interval: ’ 0T 2n®

t .
A(X,t):f z(x,t;7)dT, (5) Xsinnﬂ-x 1— Slrl(zwt+¢n) (14)
o L Ji+tcol ¢, |’
wherez(x,t;7) satisfies where cokh,=2wyIn?, andA,=2yb/m = 212R/(mxSIL) is
0z 9%z ) the maximum dc temperature accumulation at the center of
5 Yo © sir’ 0t z=0, ) the specimem, is only x dependent. The information @,
is included in the fluctuation amplitude of the temperature
z(0t)=0 around the dc accumulation.
z(L,t)=0 (7) Figure 2 illustrates how the amplitude of such a tempera-
z(x,7+0)=b sir wr. ture fluctuation depends on the frequency of the electric cur-

rent. The amplitude reaches the maximumaeg—0, i.e.,

Z(x,t;7) can be expanded in the Fourier series: when the thermal wavelength>L (where is defined as

* - nwx \=+al2w). But it shrinks to zero along the line of the av-
Z(x,t;7)= 21 Un(t;7)sin——. (8)  eraged temperature accumulation whep=>1 (A<L).
" The temperature fluctuation will result in a resistance
Substituting Eq(8) into Eq. (6), we have fluctuation, which can be calculated as
“ [du, [n? _ . nmx R (L
> +|——csifwt|U,|sih— =0, (9 SR=— | [T(x,t)—Toldx. (15)
n=1 | dt Y L L Jo
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ol ___oy=0 1.0 0.10
1f . 0.8 0.08
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- 2 > 5
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= | i
- 0.2 0.02
X g A-B =
~ 0 0.0146 10.012
— 95 0.0 L L L L 0.00
0 2 4 6 8 10
oY >>1 1 20)'Y
1r T FIG. 3. The errors oV, caused by truncating the>1 terms in Eq(16)
are shown. Curve A represents the exact solution of thev8ltage ampli-
tude. Curve B is the @ voltage of then=1 term alone. The difference
0 between them is nearly a constant at low frequencies, plotted as curve A—B.
0 X L The relative error o3, increases withw, illustrated as curvéA—B)/A.

FIG. 2. Temperature fluctuation along the specimen under a driving ac The following alternative form makes it more clear how
currentl 3 sin wt is shown. The fluctuation amplitude is marked as shadowed 9 . ” .
area. It reaches the maximum at the linaity— 0, and shrinks to a line as  the 3w voltage depends on the dimensions of the specimen:

wy—. The line in the middle of the fluctuation range denotes the dc 3 , 3
temperature accumulation along the specimen, which reaches the maximum _ 41 PePe ( L) 21)
value of A (defined in the tejtat the center of the specimen. 3w N (Zwy)z S
) L, where p, is the electrical resistivity of the specimep,

Using Eq.(14) and the relation/ (sinnamx/L) dx=[1— =(dp./dT)

(=1)"]L/nm, the resistance fluctuation can be expressed as ¢
o [1-(=1"?|  sinwt+d,)
oR=R'A 1- . (160 1II. THE HIGH AND LOW FREQUENCY LIMITS
Ogl 2mn* Vi+cof ¢, Q

. Sometimes the measurement has to be performed at the
fentlySinat, (e voltage across the Specimen containa 3 % TeAUENSY limituy—~0 (\>L), e.g. when the speci-
0 STHw% 9 P men is extremely thin and long. In this cads, is nearly

componend/;,(t). Obviously, then=2 term inV3,(t) au- . :
tomatically vanishes. If only taking the=1 term, which I;?(qel;etr;]ceyf;r;trdnependent. To an accuracy of roughty, 3i

introduces a relative error of the order3™* at low frequen-
cies, we have 41°RRL 1
(22)

~—F——=—3IR'A; (wy—0).
30 3 0 Y
213LRR TS m
V3, () ~— 2 sin(3wt— ¢), (17) If the measurement is performed at the low frequency
T kSV1+(207) limit, one can only get the thermal conductivity of the speci-

men, but loses the information on specific heat, as in Cahill's
treatment for a two-dimensional heat diffusion probfem.

At the high frequency limitwy—oo (A<L), on the

tang~2wy. (18 other hand, Eqgs(17)—(21) become quite inaccurate due to

) truncating then>1 terms in Eq(16). In this limit, all the ¢,

If using the root-mean-squarems) values of voltage  gnhr0ach to zero, and the amplitude of the summation over
and current as what the lock-in amplifier gives, ELi) be-  the time-dependent terms in E(L6) eventually becomes
comes(hereafter we always I8t,, denotes the rms value of yx_ 1oad)2=m?I8. ThereforeVs,, should be
V3, (1), andl denotes the rms value &f sinwt):

where we have redefined the phase constants — ¢, S0
that

V. — I°RR -

Vo - 41°LRR 19 3~ 20pC,LS (wy—), (23
3w .

7 kSV1+ (2wy)? which is exactly the same as Holland’s reu&imply trun-

ncating then>1 terms at thewy— limit will result in a
coefficient of 242, instead of 1/4, folVs,, in Eq. (23).

At the high frequency limit, one can only get the specific
heat of the specimen, but loses the information on its thermal
Cp=m2yklpL2. (200 conductivity.

By fitting the experimental data to this formula, we ca
get the thermal conductivity and thermal time constantof
the specimen. The specific heat can then be calculated as
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IV. ERROR ANALYSIS 9 52
—A(X,1)—a—5A(X,t)+(g—csir? wt)A(x,t)
The error ofV5, caused by truncating the>1 terms in at X
Eq. (16) is illustrated in Fig. 3. Curve A is the normalized =bsir? ot, (26)
fluctuation amplitude of Eq(16) containing terms up tm
=9, taken from a numerically generated time sequence. If A(0t)=0
almost represents the exact solution. Curve B is the fluctuar A(L,t)=0 (27)
tion amplitude of the first term alone. It appears that the A(x,—%)=0,
difference between A and Bhown as curve A-B in Fig.)3
is nearly a constant in the frequency range Dwy<10. It  whereg= 1650T8/pCpD. Equation(9) then becomes
approaches t&_5 .41 *~0.014 asw—0. However, be- "
causeV,, decreases with frequency, the relative errovej 2 {dUn
increases withw (illustrated as curvéA—B)/A in Fig. 3). =

The relative error of tag in Eq. (18) should also in-
crease with frequency. Indeed, the experimental data aptan ~ Now if we truncate thex>1 terms again and replace the
curve away from linearity at high frequencies. By fitting the factor 1fy +g with 1/y,,, Eq.(28) will take the similar form
data to Eq.(18), the high frequency inaccurate side of Eq.as Eq.(9). The final approximation solution is therefore
(18) provides more weight on the slope, so that one will get
a noticeably smallety than the true value. - 41°LRR

_ The case (_)f using Ec{_19) is fortunately just the oppo- @ W4SKap\/m,

site. The amplitude o¥3, is relatively large at the low fre-
guency side where E19) is very accurate. If we fit curve A tang~2wy,p, (30
to Eq.(19) in the frequency range<02wy<4, the obtained
x is only 3.5% higher, andy is 2% lower than the true
values.C,, is then only 1.4% higher than the true value.

Because the error in Eq19) is nearly frequency inde-
pendent at low frequencidsurve A—B in Fig. 3, it can be
further and easily reduced by shifting the fitting curve up-
wards by a small amount, i.e., fitting the data to the follow-

nmx
SinT =0. (28)

n2
+ ?Jrg—csinzwt)un

Vs

(29

where k,,=(1+97v)« is the apparent thermal conductivity,
andy,,=v/(1+gv) is the apparent thermal time constant of
the specimen. The apparent dc temperature accumulation is
AfP=A,/(1+g7y) at the center of the specimen.

Obviously, radiation heat loss can be neglected if

. <1. 31
ing form:'* 97 (31)
APLRE 1 For a cylindrical rod, condition (31) becomes
Va ~ +0.01 (20y=<4) 16eaTaL?/ m2kD <1, which means that the radiation power
3w 4 2 N 7\ " . . .
1.017"«S| 1+ (2wy) inhomogeneity caused by the temperature fluctuation along

(24)  the specimen should be much less than the axial heat current

Fitting curve A to Eq.(24) in the frequency range 0 ©F the total heating power.
<2wy<4 yields k, v, andC, that are all within 0.1% of Condition (31) is usually held for measurements per-

their true values. In this case, the error introduced by trunformed below room temperature. For example, if one has a

H H _ _ — 2
cating then< 1 terms becomes negligibly small comparison SPecimen of the sizé =1 mm andD=10""mm, and as-

with errors of other sources, such as from the size estimatiosUming« = 100_V;//m K, To=300K, the producgy is only
If one truncates the@>1 terms in Eq.(14) to calculate around 2.510 ° even if using the emissivity of a black
the temperature fluctuation, the error will be more significantbOdy-

than truncating thev>1 terms in Eq.(16). This is because However, for specimens of significantly longer or thin-
the summation converges as? in Eq. (14), not asn™# in ner, or if the measurement is performed at significantly
Eq. (16). higher temperatures, conditid81) will be violated. In these

cases, the apparent thermal conductivity is larger than the
actual value by an amount due to the radial heat loss, for

cylindrical rod which is
V. RADIAL HEAT LOSS

16eaToL?
In the previous discussion, we have neglected the radial ko=« (1+gy)=«+ —2DO—- (32
heat loss through radiation. Such heat loss per unit length .
from a cylindrical rod of diameteD to the environment of If one knows the emissivity, then bothand C,, of the
temperaturel, can be expressed as specimen can be calculated. Otherwise if the emissivity is
W(x,t)=weaD[T“(x,t)—TS]~4TreoDT8A(x,t), unknown, one will lose the information of. Nevertheless,

(25) one can still geC,, of the specimen. The reason is, by sub-
B g g stituting x,, and y,, into Eq. (20) as if there is no radial heat
where ¢=5.67<10""W/m’K" is the Stefan—-Boltzmann |oss the (}gy) factors in Kap and in y,, just cancels out,
constant, and is the emissivity. which yields the correct value o, :
Considering such heat loss, E@8) and (4) can be re-
written as Cp= ﬂ'zyapfcap/pLZE w2 yklpL?. (33
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(1o, 30) e oor Vs, %1% and V5,x1/\/1+ (2wy)?. For the platinum speci-
;g’:qa"f?:r -n men, the apparent specific heat and thermal conductivity as
P - well as the Wiedemenn—Franz ratio agree with the standard
Jsignalout (1) data over the entire temperature range measii@d320 K.
Figure 4 shows the block diagram for the measurement.
A digital lock-in amplifier such as a SR830 or SR850 made
by Stanford Research Inc. was selected. All the filters on the
lock-in were turned off, and the dc coupled input mode was
< selected, to ensure the observation of a true frequency depen-
dence ofV;, . Before measuring thedd signal, the phase of
the lock-in amplifier was adjusted to zero according to the
| > lw voltage component. The phase anglevgf, is then— ¢
| current out if R’<0'or 180°- ¢ if' R’}O according to Eq(l?). We
C used a simple electronic circuihe lower panel of Fig. $ito
?R* convert the v sine wave voltage from the sine out of the
ac current source lock in to an ac current, and then we fed the current into the
FIG. 4. Block diagram of the measurement is presented. We chose a digitépemmen' The_ @ component in the current was below 10
lock-in amplifier SR830 or SR850 to measure the Soltage. The b compared to its & component, checked by a HP89410A
voltage from the sine out of the lock in was boosted into an ac current by aspectrum analyzer. Because the 8oltage signal is deeply
simple electronic circuitlower pane). It was then fed into the specimen. 1 ried in the voltage signal, a certain amount of dynamic
The feed-back resistor*Rshould be nearly temperature independent to pre- . . ired f h ,l Kin if i d K h
vent it from generating a@ component in the current. reser\_l"’_‘tlon 1S _requwe ort e_ ockn I.’ In-or .er to .eep.t €
simplicity of this method, one is not using a bridge circuit to

Although this analysis is made for cylindrical rod, the cancel out the zb signal. We kept the.('jyngmic reservation
conclusions are also revelatory for specimens of Othepnchanged relative to the total magnification of the lock in

shapes. One can easily deduce the fagtgrfor particular du”q_% the enntre measurtemen;. th t I th
specimens if needed. ere are two ways to perform the measurement. In the

Another kind of radial heat loss, the heat loss throughflrst, the substrate of the specimen is maintained at fixed

gas convection, also introduces a linear-term correction rgemperatures, then the frequency dependendé,piis mea-

the heat conduction equation. The final solution is therefor?ured' In_this way, we - can check the’ and the
the same as Eqs(29 and (30) except that nowg 1/\J1+ (2wy)? dependencies 05, as well as the relation
= 47/pC,D for the cylindrical specimen of diametdd tand;Zwy.é\/ 3 i hi ional b
(where 7 is the surface thermal conductivitySimilar to the ecauseVs, 1%, one will get a much larger signal by

case of radiation heat loss, one needs to kndvefore being us?ng a larger. Howgver,- there are three reasons for not
able to calculatec. But one can still obtairC,, of the speci- using a very largd. First, it is required by condition10).

men through Eq(33) without knowing 5. This has been Second, radiation heat loss will be significant when the tem-

proven to be true experimentally, even when the heat losgerature modulation is large, as conditigdl) indicates.

through gas convection is much larger than the axial therma] Nird, excessive heat accumulation on the specimen would
current(the experimental data will be shown in Fig. 7 even create a considerably large temperature gradient at the

For eliminating the heat loss through gas convectionsnver paste contacts, which might violate the boundary con-

one simply needs a high vacuum. For eliminating radiatiordition in Eqg.(2). In all the cases, the expected relations such

3 . . .
heat loss, however, simply using a radiation shielding at th@?llv3rmlbw'”, TOt ze_ngld. On the”otherhs:je, tt?e relation
substrate temperatuig, would be useless because it is the will also ble violated It is tolcl) sn;]a Sﬁ tha 8w ecomcles
radiation power inhomogeneity along the specimen that matcomparabie to, or even smaller than the spuriowssgynals

ters. Nevertheless, we feel that a simple heat shieldifg, at that corrr:e frorr|1 :]he gurrent or other sources. Ig ourr:niasurhe—
will at least help minimize the static radial heat current from™Ment, the total heating power was maintained such that the

the specimen to the environment, especially for measurdEmperature modulation along the specimen was around 1 K.

ments performed above room temperature. Otherwise, Sué\ﬂevertheles_s, if the @ voltage is too sma_ll to measure then
heat current could cause the temperature of the specimen e has to increase the current for creating a larger tempera-

be inaccurate and the whole heat conduction processes beire fluctuat|on._|n this case, the actual/eragefitempera-
comes complicated. ture of the specimen has to be corrected afterwards by com-

paring the resistance of the specimen measured with the
larger current and that measured with a much smaller one.
From Eq.(21), a longer and thinner specimen also gives
We have tested thisa3 method on two kinds of speci- a larger signal. However, a largercorresponds to a larger
mens: platinum wires and bundles of multiwall carbon nanothermal time constany (y=L?), and hence, a lower fre-
tubes, by just using the approximation solutitt®). The  quency window for measurement. In practice, it will be in-
electrical resistance of the former specimen has a positiveonvenient to perform the measurement below 1 Hz. A
temperature coefficient, and the latter; a negative one. Withifarger length and a smaller cross section or diameter could
appropriate ranges of frequency and current, we do find thatlso violate the condition&0) and(31), and thus violate the

specimen

ac current
source

LHo022 LH0002

VI. EXPERIMENTAL TESTS AND TIPS
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1000~ o ~ 24k~ Lr2dsa0” ©_]
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~ 10} 1 } 1.6 }increasing
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1t a 7 -
. - . . . 0.8t
10 100 % 00 200 300 °, defect-free
I (mA) T(K) crystal
' L P 0001 04 1
- 10} bl . eB e | ' '
3 NQ 10 30 T/9
>‘§ 5r 1 §,1o"‘r E 1 FIG. 6. The Wiedemenn—Franz ratid of our platinum specimen com-
3 pared with that of usual metals with different purity is shown. The result
0 : . . 10° . . . indicates that the platinum wire used in this experiment is pure but not
0 10f(H§) 30 0 1007-(%)0 300 totally defect free. The room temperature Wiedemenn—Franz ratio of the
. . 150 . 4 . platinum wire is about 2.5210 8 WQ/K2, which is in good agreement
al . with the reported value of 2:610°8 WQ/K? in literature (Ref. 14. The
<400l fw Lorenz number of free electron gaslig=2.45x 10~ WQ/K?, plotted as
g g’ the dashed line. Note that for platinum, the Debye temperatise240 K.
g 2f ) g
- ~ B0} ¢
c | o | § f
% 70 20 30 00 700 200 300 5(e) and 5f) as open circlesC, thus obtained agrees well
f(Hz) T(K) with the standard data for platindf[the solid squares in

FIG. 5. Experimental test of thexBmethod on a platinum wire of 2@m in Fig. 5(f)] . . .
diameter is shown@) The current dependence ¢, . The open circles are The thermal conduct|V|ty of our pIatlnum wire shows a

the measured data at 25 K and 2 Hz, and the solid line is the predicteteSS pronounced peak at low temperatures compared to that
relation V3,13, (b) The frequency dependence W%, at 25 K (open  of high purity platinum. Sincex depends largely on the pu-
?Lc'ef‘s)- The Soéid "”Z is thef‘:Led‘Cr:Ed re'a“‘MBwf; 2’5 VH(ZW)' : I(C) rity, structural perfection, and even the size of the specimen,
The eduency dependence of he prase st 20 Klopen Srces . we think that thex data we obtained reflect the true thermal
C,, of the platinum specimen are plotted as open circle&jn(e), and(f), conductivity of our platinum wire. In fact, the Wiedemenn—
respectively. Also shown ifd), (€), and(f) as solid squares are the standard Franz ratio of the specimen deduced from the thermal con-
data of platinum from literaturéRef. 12. The difference inK. and o bg- _ductivity and the electrical resistivity, or more directly, de-
tween our data and the standard ones should reflect the difference in purit .
and/or structural perfection between the platinum specimens of differen uc_ed from . the thermal conductance and the electrical
sources. resistance, fits the case of pure but not totally defect-free
metals'® as shown in Fig. 6. The Wiedemenn—Franz ratio is
found to be~2.53x 10 8WQ /K? at 290 K. It is slightly

expected ® and the 1{/1+ (2wv)? dependencies 0f;,, . larger than the free-electron Lorenz number 2.45

In the second way of measurement, the temperature ok 10 8 WQ /K2, and is rather close to 2610 8 WQ/K?,
the substrate is slowly ramped up or down at a fixed ratethe reported value in literature for platinuth.
meanwhile the working frequency of the lock-in amplifier is Let us now examine the effect of radial heat loss through
switched between a few set values. The maximum workinggas convection. The data in Fig. 5 were taken in a high
frequency is adjusted by keepingwz<4 (i.e., $<76° ac- vacuum where such heat loss was virtually absent, as that
cording to Eq.(18)). And, the electric current is adjusted changing the vacuum pressure by a factor of 2 yielded a
roughly to maintain a fixed dc temperature accumulationrsamex. Shown in Figs. f@)—7(c) are two sets of data taken
(i.e., ~1 K). The whole process, including the temperatureon another platinum specimen at two different vacuum pres-
ramping, parameters adjusting, and frequency switching, argures. The circles represent the data taken in a vacuum where
all controlled by a personal computer. radial heat loss emerged but was not seyemicated by the

For the platinum specimen, we chose a wire of diameteslightly positive slope ofc at at high temperaturgsDuring
D=20um and lengthL=8 mm. We found that the thermal one of the warming-up measurements, however, we intro-
time constanty of the specimen varied from 0.005'sat 10  duced radial heat loss by destroying the vacuum of the sys-
K to ~0.2s ! at room temperature, so that the working fre- tem. After that, spurious larger thermal conductivity and dif-
guencies were chosen to be between 1 and 80 Hz. Shown fosivity of the specimen were obtained, shown as the squares
Fig. 5(a) is the current dependence ¥t at 25 K, demon- in Figs. 7a) and 7b). The radial heat current reached several
strating arl® dependence in a mediate current range. Figureimes larger than the axial one at room temperature, as indi-
5(b) and Zc) show the frequency dependencies of the ampli-cated in Fig. 7a). Nevertheless, the specific heat deduced
tude and the phase angle\df,, at 25 K, compared with the from « and « was quite insensitive to the radial heat loss
predicted functional formgthe solid line$. By fitting the  [Figs. 7c)]. The reason has been explained in Sec. V.
data in Fig. Bb) to Eq. (19), we obtained the thermal con- After all, let us check if condition$10) and (31) were
ductivity « [Fig. 5d), open circle$ and the thermal time satisfied. If takingn=1, we hadISR’L/nZTrZKvalO*?
constanty. The thermal diffusivity and the specific heat of Therefore, condition10) was well satisfied. For condition
the specimen can be obtained by using the relatipns (31), assuming an emissivitg=1 for our platinum wire
=L% 7%« and a= klpC,. The results are shown in Figs. leads tog~0.44 s 1at 300 K. On the other hang,(actually,
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0 100 200 300 FIG. 8. Experimental test of the«3 method on multiwall carbon nanotube
T (K) bundles at 50 K is showr(@) The current dependence of the 3/oltage
) . o measured at 10 Hz compared with the predicted fafgpecl® (the solid
FIG. 7. The effect of radial heat loss through air convection is presentedﬁne)_ (b) The frequency dependence i, compared with the predicted

The circles represent the data taken in a vacuum where radial heat loss WRS i
S ; . ation V3, 1/{1+(2 2. (c) The frequency dependence of the phase
not significant. In one warming-up run of the measurement, radial heat loss 30 (20y)". (©) q Y aep P

. " ) angle ofV,;, compared with the predicted relation témw. The tempera-
was triggered on a_bov§ bY destroying the vacuum Of.the system. T.h? ture dependencies of the thermal conductivity, thermal diffusivity and spe-
heat loss resulted in a spurious larger thermal conductivity and diffusivity

for the specimefithe squares irta) and (b)]. But, as predicted by Eq33), cific heat of the material have already been published elsewRate 15.

the specific heat deduced from them was relatively insensitive to such heat

loss[the squares iffc)]. K, and was about 0.08 at 10 K. In addition, the prodygt
was below 4< 10 2 in the whole temperature range investi-
gated (estimated using the emissivity of a black body
Therefore, both condition$10) and (31) were satisfied if
igonsidering the bundle as a unitary object. The nanotubes
inside the bundle were actually “self-shielded” by the out-
most ones if examining them individually, which might ef-
fectively eliminate the radial heat loss.

For a carbon nanotube bundle ofn in diameter and 1
mm in length, its mass is only around 1%, far less than
the minimum amount of madsypically in mg) required in
many other kinds oC, measurement.

Yap deduced from the measurement wa.2s. Therefore,
gy~0.088. In the real case, the prodggct should be much
smaller than 0.088, because the emissivity of a shiny metal
usually much less than unity. Therefore, conditi¢i)
should also be well satisfied.

We have also applied thea83method to measure the
andC,, of multiwall carbon nanotub@MWNT) bundles who
have a negativ®’ (Ref. 15. MWNT is a highly anisotropic
material both in geometry and in thermal conductivity, ow-
ing to its strong in-planep? bonding and the weak interwall
van der Waals bonding. Its macroscopic length against the
nanometer-sized diameter overall ensures a much shortglu' DISCUSSION
thermal time constant in the radial direction than in the axial We have explored a@ method for measuring the ther-
direction. We believe this conclusion is also true for a bundlemal conductivity and specific heat of a rod or filament-like
of MWNTSs. Therefore the heat conduction can be regardedpecimen. By fitting the frequency-dependent ¥oltage
as a 1D problem. For MWNTSs there are g and « data  data to Eq(19) within the frequency range02wy<4, we
from other sources available for comparison. Neverthelesgan obtaink andC,, of the specimen to an accuracy of 2%—
the obtained frequency and current dependencie¥/Qf  4%. For achieving a higher accuracy, one can fit the data to
were all in good agreement with E¢L9) (Fig. 8), which  Eq. (24). The presence of radial heat loss will result in a
guarantees the reliability ot and C, thus obtained. For a larger apparent thermal conductivity. BOf obtained by this
carbon nanotube bundle oE=1mm and D=10um, method is very much insensitive to such heat loss and thus
I(Z)R’L/WZKS was less than 10° at temperatures above 60 maintains reliability. A successful measurement relies on
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