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PROGRESS AND POTENTIAL Carbon-based nanomaterials (CBNs) have revolutionized materials science
with their outstanding properties but face bottlenecks in synthesis that fail to meet application demands.
As research interest has transitioned from small demos in labs to industrial applications, challenges such
as reproducibility, uniformity, and the statistical significance of indicators havemagnified, making traditional
methods inadequate. Overcoming these challenges requires new research paradigms. AI technology, which
excels in exploring complex scientific systems, offers new pathways to address these long-standing chal-
lenges. In response, we developed an AI-driven platform tailored for CBNs named Carbon Copilot
(CARCO). We applied CARCO to the highly promising yet challenging domain of horizontally aligned carbon
nanotube (HACNT) arrays and addressed two significant challenges. First, through high-throughput
screening, CARCO identified a groundbreaking titanium-platinum bimetallic catalyst, outperforming the
traditional iron catalyst, known since the 2000s as optimal for growing high-density HACNT arrays. Addition-
ally, CARCO enabled density-controllable growth through the assistance of virtual experiments, greatly
enhancing customization for various applications. Notably, these achievements were accomplished within
just 43 days, a time frame significantly shorter than the traditional research process, which could extend
over a year.
SUMMARY
Carbon-based nanomaterials (CBNs) hold immense promise in electronics, energy, and mechanics. Howev-
er, their practical applications face synthesis challenges stemming from complexities in structural control,
large-area uniformity, and consistency, unaddressed by current researchmethodologies. Here, we introduce
carbon copilot (CARCO), an artificial intelligence (AI)-driven platform that integrates transformer-based lan-
guage models, robotic chemical vapor deposition (CVD), and data-driven machine learning models. Employ-
ing CARCO, we discovered a novel titanium-platinum bimetallic catalyst for high-density horizontally aligned
carbon nanotube (HACNT) array synthesis, outperforming traditional catalysts. Furthermore, leveraging mil-
lions of virtual experiments, we achieved an unprecedented 56.25% precision in synthesizing predetermined
densities of HACNT arrays. All were accomplishedwithin just 43 days. This work not only advances the field of
CBNs but also exemplifies the integration of AI with human expertise to overcome the limitations of traditional
experimental approaches, marking a paradigm shift in nanomaterials research and paving the way for
broader applications.
INTRODUCTION

Carbon-based nanomaterials (CBNs), such as carbon nano-

tubes (CNTs) and graphene, have revolutionized materials sci-
Matter
ence with their exceptional electrical, mechanical, and thermal

properties.1,2 From facilitating the fabrication of electronics

that surpass the limits of Moore’s Law,3 to upgrading the perfor-

mance of lightweight and high-strength structural materials,4 to
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enhancing the efficiency of energy storage,5 CBNs have em-

barked on a significant journey in advanced materials. However,

the full potential of CBNs is often hindered by challenges in syn-

thesizing products with controllable structures, large-area uni-

formity, and high yield, which are critical for their transition

from laboratory research to industrial applications.

This conundrum is a microcosm of the intrinsic challenges

prevalent in the development of nanomaterials. Essentially, the

journey from atomic assembly to wafer-scale production spans

numerous dimensions, exposing the limitations of traditional

research methodologies when confronted with such complex

systems. Within the conventional scientific paradigm, innovation

is often driven by hypothesis-deductive reasoning or analogical

reasoning. Hypothesis-deductive reasoning, while powerful in

simpler systems, struggles to capture the multi-variable and

multi-layered interactions inherent in complex systems like

CBN synthesis. Analogical reasoning, which identifies similar

modes and relationships across different systems, is applicable

even in high-dimensional complexities and has been widely em-

ployed in the development of nanomaterials. However, the suc-

cess of analogical reasoning heavily depends on extensive

expertise, and transferring analogies becomes harder when a

field evolves, hindering further breakthroughs.

Once a feasible innovative method for CBN synthesis is iden-

tified, the research focus shifts to optimizing the experimental

process and analyzing the outcomes. This phase unveils another

challenge: the complex chemical interactions during the synthe-

sis process, involving poorly understood mechanisms, often

lead to difficulties in interpreting the relationship between syn-

thesis recipes and sample performance. Nevertheless, tradi-

tional academic optimization and analyzing strategies, which pri-

marily rely on the ‘‘one-factor-at-a-time’’ (OFAT) method, are

inadequate in addressing the coupling effects of various synthe-

sis variables such as catalysts, temperature, and growth sub-

strates, resulting in misunderstandings of the growth mecha-

nisms and overlooking of global optimum conditions.6

In response to these challenges, there is a pressing need to

transform the research paradigm for CBN synthesis. Machine

learning (ML) methods, known for their proficiency in navigating

the complexities of nonlinear, highly coupled systems, have

emerged as pivotal in this transformation.7 Together with auto-

mation, they herald a new paradigm in scientific research.

Recent advancements in materials synthesis, propelled by ML

and automated experiments, are indeed exhilarating.8 These ad-

vancements spanned diverse areas, including the prediction and

synthesis of high-entropy alloys through literature mining,9 the

fabrication of nanoparticles by optimization algorithm,10–12 and

notably, the recent emergence of an artificial intelligence (AI)-

agent platform for multiple chemical synthesis.13 The application

of this novel scientific paradigm holds tremendous potential in

the realm of CBNs.

Therefore, we introduce an AI-driven autonomous chemical va-

por deposition (CVD) platform called carbon copilot (CARCO) for

the synthesis ofCBNs. Thisplatform integrates transformer-based

language models, Carbon_GPT and Carbon_BERT, tailored for

carbon nanomaterials based on GPTs and BERT, driving innova-

tion in experimental design. Additionally, several data-driven ML

models are designed to produce specific advice in the synthesis
2 Matter 8, 101913, January 8, 2025
process. Complementing these ML models is an automated

CVD system, which acts as the ‘‘physical extension’’ of CARCO,

enabling around-the-clock experiments and significantly boosting

the efficiency and stability of CBN production.

As a demonstration of the effectiveness of CARCO, our

research focused on the synthesis of horizontally aligned CNT

(HACNT) arrays, which are regarded as pivotal materials for

advancing next-generation electronics but encounter bottle-

necks in precise synthesis.14 Over a period of 43 days,

CARCO exhibited marked advances in both catalyst innovation

and controllable growth of HACNT arrays. Utilizing both

Carbon_GPT and Carbon_BERT, we discerned a titanium-plat-

inum (TiPt) bimetallic catalyst as a superior and groundbreaking

alternative to conventional iron-based catalysts in CNT synthe-

sis. Moreover, we achieved precision in synthesizing HACNT ar-

rays at predetermined densities, marking a significant milestone

considering the intricate variables involved. These achievements

not only advance CNT development but also robustly validate

the role of CARCO in the evolution of CBN research.

RESULTS

CARCO platform
The CARCO platform is structured around three interdependent

core components: transformer-based language models,15 ro-

botic CVD, and data-driven ML models (Figure 1). Its modular

design enables comprehensive coverage of the CBN fabrication

research process while maintaining flexibility. Human scientists

can design workflows targeting specific scientific questions, uti-

lizing various modules as needed.

The transformer-based language models comprise

Carbon_GPT and Carbon_BERT. Specifically, Carbon_GPT

was created based on OpenAI’s custom GPTs.16 It is con-

structed by setting specific instructions and uploading a

comprehensive knowledge base related to CBNs. This process

tailors Carbon_GPT to be adept at identifying and addressing

scientific queries associated with carbon materials, thereby of-

fering macro-scale academic insights. On the other hand,

Carbon_BERT was produced by fine-tuning BERT with a rich

corpus of carbon-material-related literature. Carbon_BERT ex-

cels in filtering tasks by utilizing word embedding techniques,

such as selecting catalysts for CNT growth.17,18

The robotic CVD system encompasses several key parts: the

CVD central controller, a mini-CVD, a robotic arm, an automated

sample holder, and the sample stage (for more details, see Fig-

ure S1 and Video S1). The CVD central controller, designed using

a programmable logic controller (PLC), executes unified com-

mand over the other hardware modules based on experimental

parameters ordered by AI or human planners. The system fea-

tures precise mechanical components for accurate sample

placement and retrieval, coupled with meticulous regulation of

temperature and gas phases, all situated within a cleanroom

environment that maintains constant temperature and humidity

levels. This system demonstrates a significant improvement in

enhancing the efficiency and consistency of CVD experiments

(Figure S2).

For typical synthesis research of CBNs, the robotic CVD sys-

tem can conduct more than 30 reliable experiments daily. By
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Figure 1. Construction of CARCO platform

The CARCO platform is composed of three mod-

ules: the language model module includes two

transformer-based models customized with knowl-

edge of carbon materials, Carbon_GPT for question

and answering (Q&A) tasks, and Carbon_BERT for

filtering tasks. The robotic CVD module is orches-

trated by the CVD central control; solid arrows

indicate the command flow, and dashed arrows

show sample transfer. The data-driven machine

learning (ML) model module centers around an ML

model group built on a database, facilitating process

recommendations and high-dimensional analysis

tasks.
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collecting growth parameters and sample performance analyzed

from characterization (Figure S3), it is possible to establish a

standardized database comprising over 500 datasets within

approximately 1 month. Leveraging such a high-quality data-

base, we constructed a series of data-driven ML models. These

models adeptly map the intricate relationships between CVD pa-

rameters and the resulting sample performance. In fact, a real-

world CVD furnace essentially functions as a predictive model,

where a specific set of parameters leads to a distinct perfor-

mance outcome (Note S1). Considering the complexity of the

parameter space for CBN synthesis, manually decoding these

functional relationships through real-world CVD experiments is

highly labor intensive. Hence, through our data-driven ML

approach, we have developed a digital twin of the CVD process,

which allows for the simulation of millions of experimental data-

sets within 20 min (Note S1), identifying appropriate growth pa-

rameters by exhaustive search or integrating strategies such as

Bayesian optimization (BO) (Figure S4).19 Additionally, these

models provide crucial support in unraveling and analyzing the

complex interactions between various process parameters and

the resultant sample properties.

Emphasizing a collaborative approach, this platform inte-

grates the strengths of AI and human scientists to explore and

address intricate scientific challenges in CBN synthesis. Given

that our automated system supports all CVD-based material

systems and that the base model tailor approach is highly flex-

ible, coupled with the universality of the data-driven ML method

workflow, this platform also holds foreseeable potential in

advancing a variety of other nanomaterials.
Catalyst prediction and high-
throughput screening
As the inaugural test of the CARCO plat-

form,weembarkedonanendeavor to iden-

tify innovative methods for the growth of

high-density HACNT arrays. Leveraging

the advanced capabilities of Carbon_GPT,

we explored potential strategies to

enhance the density of HACNT arrays.

Carbon_GPT’s analysis directed us toward

several avenues: the optimization of

growthconditions, useof tailoredcatalysts,

substrate engineering, and the advance

of controlled growth technologies (Fig-

ure S5). Among these, use of tailored cata-
lysts, a relatively under-researched area recommended by

Carbon_GPT, caught our attention. Historically, iron-based cata-

lysts have been favored for high-density HACNT array growth

since the early 2000s20 The choice of catalysts, while intuitively

linked to the structural control of CNTs,21 bears a more complex

relationshipwitharraydensity.Factors likecatalystdecomposition

capability, carbonsolubility, andbehavioronsubstratescontribute

to thiscomplexity,22 limiting thescopeofexploration in thisarea for

human scientists.

Addressing this multifaceted challenge, we employed a pri-

marily screening approach of catalysts with a transformer-based

language model, analyzing word embeddings for predictive in-

sights. This method of leveraging word embeddings has already

demonstrated significant potential in fields such as thermoelec-

tric material prediction and precursor prediction of inorganic

synthesis.23,24 Rather than building amodel from scratch, we uti-

lized the open-source BERT model, fine-tuning it with carbon-

material-specific literature, thus creating Carbon_BERT. The

training process and results are depicted in Figures 2A and S6.

Carbon_BERT analyzed the relationships between various cata-

lysts and the concept of ‘‘high density’’ in HACNT arrays by

transforming texts into word embeddings (Figure 2B). We ranked

potential catalysts based on the cosine similarity between their

embeddings and that of high density, predicting the likelihood

of their efficacy in enhancing the density of HACNT arrays

(Figures 2C, S6, and S7). This ranking was not only informed

by the specialized knowledge embedded in Carbon_BERT but

was also enriched by the diverse insights inherited from BERT’s

extensive training on a wide range of topics. This method’s
Matter 8, 101913, January 8, 2025 3
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Figure 2. Catalyst prediction and screening

(A) Carbon_BERT’s fine-tuning process.

(B) Schematic representation from texts to embeddings.

(C) Rankings of cosine similarity for various bimetallic catalysts as derived from Carbon_BERT.

(D) Density statistics of HACNT arrays with different catalysts.

(E and F) Spearman correlation coefficients and SHAP values for each catalyst, demonstrating their importance in the synthesis of high-density HACNT arrays,

with TiPt showing superior performance over other combinations.
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advantage lies in its ability to tap into the latent knowledge pre-

sent in the language model, providing innovative suggestions

that may not be immediately apparent through conventional sci-

entific exploration.
4 Matter 8, 101913, January 8, 2025
The predictions regarding single-metal catalysts for CNT syn-

thesis were consistent with the findings of experimental re-

searchers according to previous reports.20,25 However, due to

the scarcity of literature on dual-metal catalysts, a direct
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evaluation of these predictions was not feasible. Thus, we re-

sorted to high-throughput automated experimentation for both

validation and further screening. We selected nine catalyst com-

binations (three each from the top, middle, and bottom tiers of

the prediction list) from the dual-metal predictions, along with

conventional Fe as a control. These were loaded onto sapphire

substrates using ion implantation technology, followed by the

synthesis of HACNT arrays using the automated CVD platform.

To ensure a fair comparison among different catalysts, a stan-

dardized parameter list was established (for more information,

see Note S2 and Table S1). This list included 10 parameter

sets that consistently led to favorable synthesis outcomes based

on preliminary trials conducted by human scientists using a

traditional Fe catalyst. Each catalyst underwent trials with all pa-

rameters in this list to establish a consistent baseline for subse-

quent experiments, and the order of sample growth was ran-

domized to minimize any systematic bias. After that, each

catalyst was further optimized manually or using BO, balancing

consistency with adaptability. The samples were then character-

ized using scanning electron microscopy (SEM) and rated based

on the density and orientation of the HACNT arrays. Analysis of

the resulting database led to exciting findings, as depicted in

Figures 2D and S8. The performance of most catalysts closely

followed the order predicted by Carbon_BERT except for

FeCo. Notably, TiPt, ranked first by Carbon_BERT and beyond

conventional scientific expectations in the field of CNT growth,

outperformed the traditional Fe catalyst in our experimental re-

sults (for more discussion, see Note S3).

To further mitigate the influence of catalysts on density per-

formance, the database was analyzed employing both tradi-

tional statistical methods and ML techniques. Catalysts were

encoded using the one-hot encoder, and Spearman’s rank cor-

relation coefficient analysis was utilized (Figure 2E). p values for

all variables were found to be below 0.05, with the ranking of

correlation coefficients displaying high consistency with the

average sample performance obtained from experimental ob-

servations. Spearman’s rank correlation coefficient offers a uni-

dimensional correlation assessment between variables charac-

terized by strong interpretability. However, it may not fully

capture the complexities inherent in the relationships between

variables. Consequently, encoded catalysts, in conjunction

with the growth process and performance, were combined to

develop a random forest regression (RFR) model, upon which

the SHAP (Shapley additive explanations) method was applied

to assess the importance of features for each catalyst (Fig-

ure 2F).26 The RFR model, adept at processing high-dimen-

sional data and complex feature interactions, in conjunction

with SHAP, provides a quantifiable insight into each feature’s

predictive contribution. The outcomes were largely in agree-

ment with the model’s predictive ranking, suggesting that

bias toward any specific catalyst was avoided in the experi-

mental parameter settings. Such findings affirm the potential

for catalyst prediction innovation through these AI methodolo-

gies. The effects of other variables on growth outcomes were

also analyzed using these methodologies (Figure S9).

Investigating why TiPt is particularly suitable for the fabrication

of high-density HACNT arrays necessitated a collaborative effort

between human scientists and CARCO. Pt is known to be a good
catalyst, and our experiments also highlighted TiPt, FePt, and

NiPt as standout formulations in the SHAP ranking. However,

standalone Pt catalysts failed to produce uniformly distributed

HACNT arrays. Specifically, Figure 3A shows SEM images of

HACNT arrays synthesized using TiPt catalysts, demonstrating

excellent uniformity at both millimeter and sub-millimeter scales.

The inset in the top image shows a high-magnification SEM im-

age, illustrating the high density and alignment of CNTs. Fig-

ure 3B shows typical SEM images of HACNT arrays synthesized

using pure Pt catalysts. Compared to TiPt, the results from the

Pt-only catalyst are highly non-uniform at the millimeter scale,

with the HACNT arrays growing in clusters. Upon magnification,

these clusters reveal regions with locally similar structures to

those grown using TiPt. This comparison suggests that Pt is

the primary catalyst for CNT growth, while Ti might play a role

related to the support of Pt.

A thorough literature review revealed that the combination of

Pt and TiO2 is a common catalyst in the field of photoelectroca-

talysis.27 TiO2 serves as an excellent carrier for Pt, and together,

they form an ideal metal-semiconductor interface, exhibiting

enhanced catalytic activity in hydrogen evolution reactions. To

investigate whether a similar support behavior occurs in the

TiPt system used for CNT growth, we further characterized the

catalyst. Atomic force microscopy (AFM) analysis of a TiPt cata-

lyst linked to a CNT (Figures 3C and 3D) revealed a layered struc-

ture suggestive of a support role: a lower layer, approximately

1.7 nm thick, likely representing a Ti-based oxide, and an upper

nanoparticle layer of approximately 3.8 nm directly connected to

the CNT, possibly representing Pt nanoparticles. Further X-ray

photoelectron spectroscopy (XPS) analysis (Figure 3E)

confirmed the only existence of Ti4+, suggesting that Ti is present

as TiO₂. This indicates that TiO₂ in the CNT growth system may

play a role similar to that in photoelectrocatalysis, supporting

the Pt and synergistically promoting the growth of high-density

HACNT arrays.

Moreover, SEM characterizations of samples with Pt and TiPt

catalysts (Figures S8, 3A, and 3B) showed that the resulting

HACNT arrays were cleaner, with fewer bent tubes, and ex-

hibited less carbon residuals. High-resolution transmission elec-

tron microscopy (HRTEM) (Figure 3F) and Raman spectra (Fig-

ure 3G) of the TiPt-grown samples confirmed the presence of

single-walled CNTs (the diameter of a CNT is�1.3 nm) with min-

imal defects, as indicated by the absence of a D-band. This may

be related to complete carbon source decomposition of Pt.

Detailed studies are currently underway to further investigate

these phenomena, and the findings will be shared in future pub-

lications. Interestingly, Carbon_GPT provided mechanistic in-

sights that aligned well with those proposed by human scientists

(Figure S10).

Density-controllable synthesis
Having demonstrated the system’s innovation in catalyst predic-

tion and high-throughput screening, another intriguing question

for us was its capability to achieve precise synthesis. HACNT ar-

rays hold extensive potential in fundamental property research

and applications in electronic and optoelectronic devices28

and biomedical sensors.29 In carbon-based field-effect transis-

tors (FETs), HACNT arrayswith higher density are often sought,30
Matter 8, 101913, January 8, 2025 5
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Figure 3. Characterization of HACNT arrays and catalysts

(A) SEM images at different magnifications of HACNT arrays synthesized using TiPt catalysts.

(B) SEM images at different magnifications of HACNT arrays synthesized using Pt catalysts.

(C) AFM image of an individual CNT grown with a TiPt catalyst.

(D) Height profile of the TiPt catalyst corresponding to the AFM image in (C).

(E) XPS spectrum of the TiPt sample, where fitted Ti peaks indicate the presence of Ti4+.

(F) HRTEM characterization of HACNT arrays with TiPt catalysts.

(G) Raman spectra of HACNT arrays grown with TiPt catalysts.
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while in biomedical sensors and fundamental spectroscopy

research, maintaining density within the resolution limits of

analytical methods is crucial.31 Therefore, the ability to

customize samples with specific densities is an overwhelming

superiority of CVD synthesis and has significant application

value.

The key to this challenge lies in establishing the functional rela-

tionship between process parameters and sample density. ML

methods were employed to handle these multifactorial,

nonlinear, and non-monotonic complex relationships. We devel-

oped a standardized database using CARCO, comprising over

500 data points including catalysts, growth parameters, and

characterization results. Multiple ML models were built to repre-

sent the functional relationship between process parameters

and predicted sample scores. In essence, these models acted

as digital twins of real-world CVD equipment (Figure 4A). In the

digital twin, we were able to perform up to one million experi-

ments in 20 min, facilitating a more nuanced exploration of the
6 Matter 8, 101913, January 8, 2025
CVD growth parameter space. Based on the virtual experiment

results, we selected optimal experimental parameters and rec-

ommended them for real experimental validation. The outcomes

of these real experiments were then added to the database,

continuously improving the model in an iterative loop.

The quality of these models directly influences the accuracy of

the digital twin experiments. Given that the density of HACNT ar-

rays in the parameter space exhibits a log-normal distribution,

we first eliminated samples with a score of 0, then applied a log-

arithmic transformation to the remaining scores. BO was utilized

to find the best parameters for the models, with the RF, gradient

boosting regressor (GBR), and XGBoost (XGB)models emerging

as winners, achieving R2 scores of 0.67, 0.65, and 0.64 respec-

tively (Figures 4B, 4C, and S11). Given the inherent randomness

in CVD experiments and score assessments, the interpretability

of the models for real experimental data was quite satisfying.

Predicting the density of HACNT arrays involves both classifica-

tion (whether growth occurs) and regression (how dense the
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Figure 4. Density-controllable synthesis

(A) Workflow for model establishment and density-controllable synthesis.

(B) Performance metrics of regression machine learning models.

(C) The RF model’s performance on the test set, with a scatterplot showing the correlation between actual and predicted HACNT density scores.

(D) Confusion matrix for the classification accuracy of growth occurrence.

(E) Experimental validation of density-controllable growth, with the x axis representing specified densities and the y axis showing results from real-world ex-

periments.

(F) Comparative success rates of different approaches: solely regression, regression combined with classification, and incorporating human evaluation.
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growth is) problems. Our initial data engineering led to a lack of

understanding of the non-growth parameters in regression; thus,

we established a separate classification model as a filter to

exclude non-growing parameters suggested by the regression

models (Figure 4D). Consequently, a digital twin comprising

four models was constructed, generating a virtual database of

experiments on the scale of millions.

Based on this, we developed a workflow for fabricating CNT

arrays with specified densities, as depicted in Figure 4A. To

achieve a certain density, we simply need to find the closest-
matching process parameters in the virtual database. Using an

ensemble-training-like method, we cross-validated the parame-

ters suggested by various models, assigning a credibility score

to each set. Finally, the classification model filters out parame-

ters unlikely to result in growth, yielding candidate sets

(Table S2). Figures 4E and S12 show the experimental validation

of this process. A systematic experimental validation was con-

ducted across a spectrum of densities, ranging from 0.5 to 25

nanotubes per micrometer (lg (score) ranging from 2 to 3.7), cor-

responding to scores from 2.0 to 3.7. With a tolerance margin
Matter 8, 101913, January 8, 2025 7
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Figure 5. Interactive workflows with CARCO

Two workflows, catalyst prediction (left side) and

controlled-density growth (right side), demon-

strating CARCO’s capabilities in innovation and

precision manufacturing within CBN synthesis

research.
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of 10% in lg (core), the process parameters recommended

through the established workflow demonstrated a striking accu-

racy rate of 56.25% (27/49). This efficacy distinctly surpasses the

39.74% (31/79) accuracy achieved when solely dependent on

regression models.

Human brains excel in performing tasks akin to a classification

model.32 We had human scientists filter parameters suggested

by regression models, achieving an accuracy of 49.15% (29/

60), which is lower than that of classification models. Interest-

ingly, when human scientists judged parameters refined through

a secondary screening by classification models, the accuracy

reached 61.36% (27/45). Human scientists successfully elimi-

nated four sets of parameters that did not meet the specified

density targets, reaffirming the synergy between human intuition

and CARCO suggestions. Figure 4F presents the success rate of

parameter recommendations for each density. At lower den-

sities, the candidates provided by regression models contained

many that were unviable for growth, likely due to more distinct

features, allowing both classification models and human scien-

tists to effectively eliminate poor parameters. At higher specified

densities, the parameters suggested by regression models were

generally reasonable, making it challenging for classification

models and human scientists to identify non-viable parameters.

Theoretically, the results mentioned above could be further

improved with the expansion of the database. In summary,

with the assistance of the CARCO platform, we can achieve pre-

cise control that is unattainable with traditional methods, open-

ing up possibilities for the application of HACNT arrays in a

broader range of fields.

DISCUSSION

Our study made valuable contributions to the field of HACNT ar-

rays. By leveraging various modules of CARCO, we have not

only achieved catalyst prediction for HACNT array synthesis, cor-

responding to an innovative challenge, but also accomplished the

targeted density growth of HACNT arrays, corresponding to an

optimization challenge. Figure 5 illustrates the workflows for ac-

complishing these two challenges. A noteworthy aspect of our

work is the unexpected alignment between Carbon_BERT’s cata-

lyst predictions and the actual experimental results, highlighting

the efficacy of embedding methods in the synthesis of CBNs.

This alignment led to the innovation of TiPt as a potential dual-
8 Matter 8, 101913, January 8, 2025
metal catalyst, which exhibits promising at-

tributes compared to traditional iron cata-

lysts for the synthesis of high-density

HACNT arrays. Moreover, our platform

has enabled the synthesis of HACNT ar-

rays with specified densities, achieving a

precision rate of 56.25%,which is ‘‘mission
impossible’’ without AI methods. It is worth noting that all the ex-

periments were completed in approximately 1 and a half months.

The current efficiency is primarily constrained by the efficiency of

nanomaterial characterization.

The vital role of ML in advancing the CBN field has been under-

scored by this research. A direct advantage observed is the

marked increase in experimental throughput and consistency

achieved with the robotic CVD, particularly crucial for addressing

the complex system challenges inherent in nanomaterial synthe-

sis. The potential of transformer-based language models to inject

innovation into nanomaterial research has been validated,

possibly due to their ability to facilitate cross-disciplinary crea-

tivity, supported by their extensive and diverse training data.

Diverging from other recent ‘‘AI for science’’ publications,8,13,19

this work emphasizes the collaborative synergy between AI and

human scientists. This exploration of cooperation is particularly

meaningful for nanomaterial research, where characterization

and evaluation pose complex challenges. In fact, compared to

traditional macroscopic materials, the characterization of nano-

materials presents a higher level of complexity. For example, in

our case, for the density of HACNT arrays, it is difficult to obtain

high-quality quantitative results with high-throughput and auto-

mation-compatible spectroscopic characterization methods,

requiring the assistanceof human scientists for SEMcharacteriza-

tion and measurement. We believe it is important to explore the

cooperative pathways between AI agents and human scientists.

For the time being at least, CARCO acts as a copilot for human

scientists, not a replacement.

Looking toward the future, our study’s approach holds

immense potential for scalability and adaptability across various

nanomaterial systems. The flexibility of our method, anchored in

the tailoring of transformer-based languagemodels to specialized

domain-specific models, offers a robust framework that can be

applied to other domains. The automated CVD platform is natu-

rally suitable for a wide range of nanomaterials like graphene

and molybdenum disulfide. Building upon these foundations, the

system aims to reshape perspectives in nanomaterial synthesis.

The advent of AI technology is set to revolutionize researchmeth-

odologies. The efficacy of AI in this context is not solely in its

standalone capabilities but also significantly in its synergistic

collaboration with human scientists. We hope our research can

serve as a prototype, demonstrating the profound impact of AI

technologies in advancing the nanomaterials field.
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EXPERIMENTAL PROCEDURES

Construction details of CARCO

GPT and BERT are both transformer-based models but are designed for

different purposes. GPT is an autoregressive decoder model, well suited for

generating new content. In the CARCO platform, Carbon_GPT was used

for generating high-level suggestions based on prior knowledge. On the other

hand, BERT is primarily a bidirectional encoder model, which is excellent for

understanding the context and relationships within a given input. In CARCO,

it is used to extract structured knowledge from large datasets of scientific texts

to evaluate catalyst candidates.

Specifically, to construct the Carbon_GPT for our CARCO platform, we

tailored a GPT specifically for the domain of CBNs, with a particular focus

on CNTs. The creation of Carbon_GPT beganwith configuring specific instruc-

tions and incorporating an extensive knowledge base, selected meticulously

to encompass the broad spectrum of research and applications pertaining

to CBNs. The primary instructions are as follows.

Carbon GPT, while an expert in carbon materials, focuses predominantly on

carbon nanotubes. It offers extensive knowledge from both English and Chi-

nese literature, adapting its responses according to the query’s language.

The AI’s primary functions include: 1) Providing overviews and macro-level

guidance on carbon nanotube research, summarizing scientific inquiries,

and recommending exploration areas. 2) Detailing preparationmethods, appli-

cations, and practical advice specifically for carbon nanotubes. 3) Analyzing

real-world experimental results related to carbon nanotubes, interpreting

data, and offering insights for improvement. While its expertise extends to

broader carbon materials, Carbon GPT’s core strength and focus remain on

carbon nanotubes, ensuring in-depth, tailored responses in this area.

Carbon_BERT underwent fine-tuning with a comprehensive corpus of liter-

ature on carbon materials. On one hand, we selected high-quality literature

related to carbon materials and utilized GPT-4 for data cleaning; on the other

hand, we used a search engine to filter out texts related to carbon materials

and catalysts from the original BERT training data. Together, these formed a

knowledge base on carbon materials. In processing the data for fine-tuning,

we paid special attention to the structure of the input text. We ensured that

distinct lines of text in the dataset were handled as distinct sequences, which

is crucial for models designed to understand and generate text based on com-

plex scientific literature. This strategy allowed for a more nuanced and contex-

tually aware learning process, particularly beneficial for the specialized domain

of carbon materials.

During the fine-tuning process, we employed the masked language model

(MLM) loss function, foundational to BERT’s training. By randomly masking to-

kens in the text andpredicting thesebased on the context of surrounding tokens,

wedeepened themodel’s grasp of language structures and domain-specific ter-

minologies. Adjustments to the proportion ofmasked tokens and the exploration

of different learning rates further optimized the model’s ability to internalize the

intricate vocabulary and concepts central to carbon materials.

To assess the effectiveness of our training approach, we devised 12 specific

test questions covering a broad spectrum of topics within the carbonmaterials

and catalyst field. The outcomewas a notable improvement in themodel’s per-

formance, evidenced by the increase of the Spearman correlation coefficient

from 0.1 to 0.3.

The robotic CVD system encompasses a CVD central controller, a mini-

CVD, a robotic arm, an automated sample holder, and a sample stage. The

mini-CVD selected is the Micro-STS1200 from Units Technology. Its compact

design and pre-installed optical windows ensure the scalability of the robotic

CVD system. Custom sample rods were designed and connected to linear

rails, with the sample stage being moved in and out by stepper motors. Optical

sensors were installed on both sides for positioning, and a specially designed

wedge-shaped furnace opening ensures a good seal under certain pressure

conditions. The robotic arm selected is the MG400 from Dobot, used for

placing and picking up substrates with a suction nozzle. All modules are cen-

trally controlled by the CVD central controller, which is equipped with a PLC

(Panasonic C40ET). It can be operated through a homemade interface or con-

nected to a personal computer (PC) for control.

In constructing the data-driven ML models, we initiated our framework with

data engineering. This involved the preprocessing of the dataset where cata-
lyst variables were transformed to one-hot vectors to convert categorical data

into a machine-readable format. The synthesis parameters were retained in

their original form to maintain the integrity of the experimental conditions.

The response variable, ‘‘Score’’ representing the performance of HACNT ar-

rays, was logarithmically transformed to lg (Score) to normalize the distribution

of the data and stabilize the variance. The dataset was split into training (0.7)

and testing (0.3) subsets to ensure the robustness and generalizability of the

model. Subsequently, RFR, GBR, XGBR, logistic regression (LR), and decision

tree regression (DTR) were developed, respectively. We employed BO as a

strategic approach to refine the hyperparameters of the model. This process

began by defining a range for each hyperparameter, which guided the optimi-

zation algorithm. The Bayesian optimizer was then initialized to explore the hy-

perparameter space, balancing the trade-off between exploration of new pa-

rameters and exploitation of ones known to be effective. The objective function

to maximize was the cross-validated performance of the model on the training

set. The output of the BO provided a set of best hyperparameters, which were

used to train the final ML models. The performance of the models was evalu-

ated using the R2 score, mean absolute error (MAE), and root-mean-square er-

ror (RMSE) on the testing set. These metrics provided insights into the accu-

racy and reliability of the model’s predictions (Figure S13; Note S4).

In addition to regression analysis, we also implemented a binary classifica-

tion to distinguish between growth and non-growth samples. This was

achieved by creating binary labels from the score with a defined threshold. A

pipeline was established to streamline the process of predicting the likelihood

of growth occurrence. The process concluded with an evaluation of the

model’s performance, ensuring the accuracy and efficacy of the predictions

(Figure S14).

Catalyst screening

In the initial phase of catalyst screening, we established a comprehensive list

that consisted of a series of questions along with a list of potential candidate

catalysts. For the processing of our textual data, the BertTokenizer from the

transformers library was employed to convert the text into a format compre-

hensible by the model. The BertModel, a PyTorch implementation of BERT,

was utilized to operationalize the pre-trained Carbon_BERT model. This setup

facilitated the conversion of all listed words into embeddings, effectively

capturing the contextual relationships inherent in the language model’s

training data. The embeddings for each word in the list were generated by

passing the text through the tokenizer and subsequently through the model,

focusing on extracting the last hidden state of the [CLS] token representation,

where [CLS] stands for Classification Token, serving as an aggregate embed-

ding for the input sequence.

Upon obtaining the embeddings, the cosine similarity between the question

embedding and each of the candidate catalyst embeddings was computed.

This metric evaluates the cosine of the angle between the vectors in the

embedding space, generating a similarity matrix. The similarity scores specific

to the predefined query regarding high-density HACNT array synthesis were

extracted, and the candidate catalysts were ranked according to their cosine

similarity to the query. This ranking indicated the likelihood of each catalyst’s

efficacy in enhancing the density of HACNT arrays, thereby guiding the selec-

tion process toward the most promising candidates for further experimental

validation.

Growth and characterization of HACNT arrays

We utilized a-plane sapphire substrates (single-side polished, miscut

angle < 0.5�, surface roughness < 0.5 nm) for the preparation of HACNT arrays,

which were acquired from Hefei Kejing Materials Technology, China. The initial

stage involved loading the catalysts onto the substrates using ion implantation

technology conducted at room temperature. This implanter (FAD-MEVVA) is

equipped with a uniform beam spot exceeding 8 inches in diameter,33 a spec-

ification verified using Gafchromic EBT3 self-developing dosimetry film.34

Such uniformity enables the concurrent implantation of catalysts into five 3

inch sapphire wafers, with each wafer segmented into roughly 160 samples

measuring 43 6 cm2. As a result, each implantation cycle can consistently de-

posit catalysts on approximately 800 samples. The ion fluence was controlled

within a range from 1E13 to 1E16 ions/cm2, and the ion energies were adjusted

between 5 and 20 keV. We employed a range of elements including Fe, Co, Ni,
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Cu, Ti, Pt, and Ru. The physical phenomena of ion implantation were examined

using The Stopping and Range of Ions in Matter (SRIM) software suite. Specif-

ically, the Monte Carlo-based Transport of Ions in Matter (TRIM) simulation

was implemented to probe the interactions between energetic ions and the

sapphire substrates.35

After the ion implantation, the samples were sequentially ultrasonically

cleaned in deionized water, acetone, and ethanol. An annealing process at

1,100�C in an air atmosphere for 5 hwas then conducted. This stepwas crucial

in mending the radiation-induced damages to the substrate surface from the

implantation.

The growth process was fully automated by the robotic CVD system. Sub-

strates were conveyed into the mini-CVD by the robotic arm and automated

sample holder. Upon the initiation of the growth cycle, the system was pro-

grammed to reach the predetermined temperature in 15 min. Once the target

temperature was achieved, the system sequentially executed the reduction

and growth phases. Following the growth cycle, the temperature was rapidly

reduced by water cooling, taking approximately 7 min for the system to reach

150�C. At this point, the samples were automatically retrieved by the sample

holder and robotic arm, and the system proceeded to the next set of growth

tasks.

The parameter space for the synthesis was defined with specific ranges to

optimize the conditions for HACNT array growth. The parameters were set

as follows: temperature, ranging from 800 to 1,000�C; reduction time, ranging

from 1 to 1,000 s; growth time, ranging from 1 to 1,000 s; argon flow, ranging

from 50 to 500 sccm; hydrogen flow, ranging from 15 to 500 sccm; and ethanol

flow, bubbling by argon flow, ranging from 1.7 to 118.3 sccm.

A typical experimental workflow and timeline overview is shown in Note S5.

Performance evaluation of HACNT arrays

We performed general characterization of HACNT arrays, including SEM,

Raman, XPS, HRTEM, and AFM analyses (Figures 3 and S15). SEM images

were obtained on a Hitachi S4800 SEM operated at 1.0 and 10 kV. Raman

spectra of HACNT arrays with line mapping conducted with a step of 5 mm

and a laser beam spot of �1 mm were collected from Jovin Yvon-Horiba

LabRam systems with 532 nm excitation. XPS spectra were obtained on

AXIS Supra, HRTEM spectra were obtained on JEM-F200, and AFM images

were obtained using a Dimension Icon microscope (Bruker).

The score of HACNT arrays is composed of two aspects: density and orien-

tation. Density is computed using a Python-based recognition program that

was custom developed for this purpose, while the orientation is subjectively

evaluated to obtain a penalty factor. Scores for each sample are then deter-

mined through a standardized computational method (Figure S3).
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