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High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching
composition and property regimes inaccessible for dilute materials. Discovering those with valuable
properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often
fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the
design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data.
Our approach works as a closed-loop, integrating machine learning with density-functional theory,
thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of
millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal
expansion coefficients around 2 x 107® per degree kelvin at 300 kelvin. We believe this to be a suitable
pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic,

and electrical properties.

lloy design refers to a knowledge-guided

approach to the development of high-

performance materials. The strategy was

established in the Bronze Age and has

undergone further developments since
that time. Alloy design is the basis for the
development of different materials that en-
able technological progress. Several thousand
metallic alloys have been developed so far
that serve in engineering applications. The
first essential alloy groups developed, such
as bronze and steel, are all based on one main
element that forms the matrix of the material.
Over time, alloys with a higher number of al-
loying elements in larger fractions, such as
austenitic stainless steels, have been devel-
oped. Today, with the development of high-
entropy alloys (HEAs), we have reached a
stage where multiple elements are used in
similar fractions (7, 2). Considering only the
most used elements of the periodic table, this
spans a composition space of at least 10°° alloy
variants, a space so large that it cannot be
managed by conventional alloy design methods
(3). These conventional methods for designing
alloys, which have been applied to small sub-
spaces of the HEA composition realm, include
calculation of phase diagrams (CALPHAD) and
density-functional theory (DFT) (4-6). However,
CALPHAD provides equilibrium-phase diag-
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rams only, and DFT is computationally costly
and cannot be readily applied to higher tem-
peratures and disordered alloys (5, 7). Like-
wise, combinatorial experiments (8) are very
labor intensive and only cover the limited com-
position space of HEAs.

Because of these methodological limitations
to finding materials with promising functional
and mechanical features, we present a differ-
ent approach to accelerating the discovery of
HEAs. We based our approach on the use of
machine learning (ML) techniques, with a
focus on probabilistic models and artificial
neural networks. Limited by the amount of
available composition-property data, conven-
tional ML approaches in alloy design have to
predominantly rely on simulation data, often
with only limited experimental validation
(9, 10). As the experimental microstructure
database continues to expand, ML obtains
higher accuracy in predicting the phase or
microstructure of materials (11). However,
the direct composition-property prediction is
still elusive because of the comparably small
databases and the human bias in feature se-
lection. Recently, active learning has emerged
as an alternative choice for functional mate-
rials discovery (12). Active learning is a subfield
of ML in which surrogate models iteratively
select unseen data points that are most in-
formative to improve the predictive power of
the models (73). In this approach, the next set
of experiments is guided by the previous model
trained based upon the results seen so far,
yielding data points that will again be used
iteratively for updating the model. Active learning
has the potential to reduce the computational
costs of alloy design and to both incorporate
and guide experimental data and routines.
However, active learning approaches to guid-
ing the experimental discovery of materials

have relied on simple surrogate models and
Bayesian optimization methods, which are
limited to low-dimensional data, thus showing
property improvements only after many iter-
ations (14, 15).

To overcome these obstacles, we propose an
active learning framework for the composition
discovery of HEAs that is efficient for very
sparse experimental datasets. The approach
comprises ML-based techniques, DFT, mean-
field thermodynamic calculations, and experi-
ments. We focused on the design of high-entropy
Invar alloys with a low thermal expansion
coefficient (TEC) for several reasons: (i) a high
demand exists for different types of Invar al-
loys to serve emerging markets for the transport
of liquid hydrogen, ammonia, and natural gas;
(ii) the mechanical properties of the original
Fegs 5Nisg 5 (Wt %) alloy for which Charles
Edouard Guillaume received the 1920 physics
Nobel Prize leave room for improvement; (iii)
alternative Invar alloys (e.g., intermetallic,
amorphous, or antiferromagnetic Invar com-
pounds) come at forbiddingly high alloy costs
and/or poor ductility (16, 17); (iv) although a
few HEAs have the potential to fill this gap
(18-20), the lowest TEC (~10 x 10°° K™) of
HEAs reported in the literature exceeds the
value of the original Fegs sNizs5 (Wt %) alloy
(~1.6 x 107° K™Y (19); and (v) our active learn-
ing framework mainly considers compositional
information instead of the alloy manufacturing
process, which makes the Invar effect an ideal
target because these alloys are mostly determined
by composition and less by processing (6, 19)
(see fig. S1 and table S1 for more background).

Results and discussion
Generative alloy design

The active learning framework includes three
main steps: targeted composition generation,
physics-informed screening, and experimental
feedback (Fig. 1). Considering the large num-
ber of possible composition combinations of
HEAs and the small experimental datasets
(699 compositions; fig. S2), the challenge is to
directly sample new compositions with the de-
sired properties. Therefore, we developed an
HEA generative alloy design (HEA-GAD) ap-
proach that is based on a generative model
(GM) (2I1). First, the HEA-GAD uses GM,
mathematical modeling, and sampling to per-
form a large-scale search of potential Invar
alloys. GM learns an efficient and effective re-
presentation of the high-dimension data, which
not only provides direct data visual represen-
tation, but also converts the search in high-
dimensional design spaces to those of lower
dimensionality (22). Different GMs are compared
and analyzed on the basis of the evaluation
metrics. The results show that the Wasserstein
autoencoder (WAE) architecture performs bet-
ter than other models with similar architec-
tures (21) (figs. S3 and S4). The encoder takes
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Fig. 1. Approach overview. We developed an active learning framework for
the targeted composition design and discovery of HEAs, which combines ML
models, DFT calculations, thermodynamic simulations, and experimental
feedback. First, the promising candidates are generated under the HEA-GAD
framework consisting of two primary steps: (i) an autoencoder for composition
generation and (ii) stochastic sampling for composition selection. Second,

compositions of alloys as the input and learns
to compress them down to low-dimensional
representations, and the decoder can then act
as a generator for producing alloy compositions
given the learned continuous latent g repre-
sentation. Although WAE is trained with only
compositional information of alloys, it may im-
plicitly include information on composition-
related properties, which makes the latent space
physically meaningful and informative. In our
case, Invar alloys show extremely low TEC
(hereafter used to refer to the TEC around
room temperature unless otherwise specified)
values, and the composition-TEC relation obeys
specific physical laws. Subsequently, HEA-GAD
uses the Gaussian mixture model (GMM) and
Markov chain Monte Carlo (MCMC) sampling
(23, 24) to perform a large-scale search for the
Invar compositions generated from WAE latent
representation.

Two-stage ensemble regression

Next, we use the two-stage ensemble regres-
sion model (TERM) to further investigate the
TEC of the HEA-GAD-generated alloy compo-
sitions. The first stage concerns composition-
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Ranking policy

based regression models aiming at fast and
large-scale composition inference. Then, the
top ~1000 results with potentially low TEC
from the HEA-GAD model are screened and
enter the second-stage model, where DFT and
thermodynamic calculations are included as
part of the input, making it a physics-informed
model (table S4). In the following section, we
demonstrate that incorporating the physical
inputs does increase the model accuracy. To
increase the robustness of TERM without
sacrificing the prediction accuracy, TERM
taps into the advantages of the multilayer
perceptron (25-27) and gradient-boosting
decision tree approaches (28-30) by combin-
ing both into a single ensemble (31). Based on
prediction and uncertainty, the exploration
and exploitation strategy is used to adaptively
guide the discovery of desirable compositions
(31). Exploration prefers the composition with
higher uncertainty (curiosity), whereas ex-
ploitation favors the composition with lower
predicted TEC (perceived usefulness). Such a
baseline strategy is premised on the model’s
ability to generalize beyond the known data,
which is, however, often hampered by the highly
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the selected candidates from the HEA-GAD are further processed by the TERM
framework, which includes two ensemble models composed of multilayer
perceptrons and gradient-boosting decision trees. In the last step, the most
promising compositions are selected by a ranking-based policy. The top three
candidates are experimentally measured and fed back to the database. The
iteration is repeated until the discovery of Invar alloys.

nonlinear nature of the composition-property
relation and sparsity of the available dataset.
To overcome this issue, we designed a rank-
order strategy that allows predictions to be
rearranged and ranked in a specific order
(32, 33). This strategy is particularly advanta-
geous when the underlying distribution of
the data is largely unknown. The rank-based
strategy ensures that the candidate selection
is less affected by model inaccuracy and pro-
vides a systematic way to combine model
prediction and uncertainty (3I). Finally, the
TEC values of the top three selected candidate
materials are experimentally determined by
the physical properties measurement system.
These experimental results then augment the
training database for the next active learning
iteration.

Compositional latent space distribution

‘We produced a large benchmark dataset with
699 data points of Invar alloys mainly from
former publications (fig. S2 and table S3) (34-39).
Then, on the basis of the HEA-GAD-TERM
framework proposed above, we performed six
iterations and cast 18 alloys including 17 new
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alloys and one Feg; 5Niss 5 (Wt %) classic Invar
alloy as a reference alloy. Because of the data
imbalance (figs. S5 and S6), the discovery of
FeNiCoCrCu HEAs is much more difficult
than the discovery of FeNiCoCr HEAs. For this
reason, we focused on the design of FeNiCoCr
HEAs for the first three iterations and on
FeNiCoCrCu HEAs for the last three iterations.
We show the WAE latent space and GMM-
modeled two-dimensional probability density
of the first iteration in Fig. 2, A and B. The la-
tent space yields certain islands that indicate
the compositional differences. For example,
the HEAs tend to stay in the middle, whereas the
binary and ternary alloys tend to stay in the
edges of the latent space. Also, a smooth tran-
sition among the Fe-Ni, Ni-Co binary alloys
and the Fe-Ni-Co ternary alloys can be ob-
served. FeNiCoCrCu forms a single island, in-
dicating that features of compositions with
nonzero Cu content are indeed captured by
HEA-GAD. The new FeCoNiCr HEAs candidates
are cross-marked, whereas the best-ranked HEAs
are illustrated with white dots in Fig. 2, A and
B. We also show the last iteration result of
FeCoNiCrCu HEAs discovered by HEA-GAD-
TERM in Fig. 2, C and D (in red). The entire

Fig. 2. First and last (sixth) itera-
tions of the HEA-GAD generation.

latent space is slightly rotated because of the
addition of new data into the training data-
set from previous iterations. The augmented
dataset also leads to a modified GMM-modeled
probability density shown in Fig. 2D, in which
the left Gaussian ellipse extends more to the left
region compared with Fig. 2B. Such pheno-
mena suggest that the HEA-GAD-TERM frame-
work is interpretable and sensitive to the dataset.

Physics-descriptor—informed model

So far, the Masumoto empirical rule (34, 35)
has played an important role in the discov-
ery of several Invar alloys. As exemplified in
Fig. 3D for the FegoNis5Cos (Wt %) Super Invar
alloy, according to this rule, the TEC is related
to the ratio wg/7;, (magnetostriction/Curie tem-
perature): Because of the Invar effect, Invar
alloys have lower TEC in the ferromagnetic
state (below Curie temperature @) than in the
paramagnetic state (above Q). The TEC in the
ferromagnetic state can thus be estimated as

QS QRA—-SA QA SA 08
TEC*ﬁ*TfTC—TC ~tand — ?C
We demonstrated the correlation between w,/
T. and the experimental TEC with DFT and

WAE latent space

(A and B) WAE latent space
and GMM-modeled density of the
first iteration. (C and D) WAE
latent space and GMM-modeled
density of the last iteration. The
WAE latent space distribution
of the different compositions is
marked with different symbols.
The colors of the data points in
the latent space denote their
corresponding TEC. The GMM
shows the probabilistic density
in the latent space. The new
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CALPHAD for FeCoNi alloys. The alloys from
our experimental dataset were slowly cooled
from high-temperature homogenization, so
an equilibrium temperature to calculate the
phase fractions in our samples cannot be de-
termined unambiguously. We nevertheless cal-
culated w¢/T, for the annealing temperatures
Tann = 1273 K, 1073 K, and 873 K (Fig. 3, Ato C)
and observed a good correlation with the ex-
perimentally observed TEC values, especially
for the values taken at 7,,,, = 873 K. s and T,
are thus useful descriptors that can be exploited
to increase the accuracy of TERM. We show
the comparison of the model training history
with and without the use of the descriptor 7,
(Fig. 3E). This history reflects the performance
evolution with time (epoch) as more data were
fed to the model. The final testing error was
notably reduced from 0.19 to 0.14 upon in-
clusion of DFT and CALPHAD data, a piece of
strong evidence that the physics-descriptor-
informed model can achieve better accuracy
than that based only on compositions.

Learning curve and thermal expansion behavior

We show the measured and predicted TEC
values of the 17 alloys experimentally measured

GMM-MCMC sampling
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Fig. 3. Importance of the physics-informed descriptors. (A to C) Correlation between the proposed descriptor ws/T. and the experimental TEC. (D) Schematic
model of the Masumoto empirical rule for discovering Invar alloys. (E) Comparison of training and testing history with and without use of the descriptor ws/T.. Both

the final training and testing errors decrease after considering the physics-informed descriptors; for example, the testing error decreases from 19 to 14%.

Table 1. Compositions and TEC of the HEAs designed in this work.*

Alloys Iteration Fe Ni Co Cr Cu Predicted TEC Predicted uncertainty Experimental TEC
wt%) (wt%) (wt%) (wt%)  (wt %) (x1076/K) (x107%/K) (x1076/K)

Al Ist 55.2 239 16.7 4.2 0 3.41 1.29 7.54
A2 Ist 49.2 17.2 27.1 6.5 0 313 0.75 10.52
A3 Ist 418 94 40.9 8 0 4.39 0.79 141

A4 2nd 52.5 22 20.8 4.7 0 391 0.53 7.97
A5 2nd 44 138 34.6 7.6 0 4.20 0.96 3.24
A7 3rd 42.4 12.6 37.7 7.3 0 4.58 1.40 4.09
A8 3rd 442 158 33.2 6.8 0 5.88 2.17 483
A9 3rd 54.1 22.8 17.2 59 0 5.16 143 2.02

Bl 4th 40 6.9 BUI5 7.9 5.7 7.57 1.45 5.84
B2 4th 48.8 17.8 22.2 6.2 5 548 1.01 4.38
B3 4th 57 16.4 14.6 51 6.9 4.43 133 8.56
B4 5th 40.6 6.9 38.3 9.2 3 8.41 1.70 494
B5 5th 57.7 22.9 8.3 5.2 59 4.50 1.00 531

B6 5th 51.6 6.8 275 7.8 6.3 9.32 3.49 9.68

B7 6th 48.3 17.8 209 7.9 51 5.49 0.92 5.60
B8 6th 50 183 183 8 54 5.65 116 5.3

B9 6th 50.7 199 158 79 5.7 5.56 1.05 6.29
*The original Feg35Nise 5 Invar (A6) is a reference alloy and is not listed here.
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in the six iterations in Table 1. A3 and A9 HEAs
with four principal elements show extremely
low TECs that are comparable to the classical
Fegs 5Nigs5 (Wt %) binary Invar alloy. B2 and
B4 HEAs with five principal elements show

TECs that are comparable to the commercially
used Fes,Coy;Niyg (Wt %) ternary Kovar alloys.
In addition, a tabular comparison between
HEA-GAD-TERM and trial and error can be
found in table S2, where our method shows a

fivefold higher discovery rate than that achieved
by the trial and error approach alone.

We illustrate the alloy discovery process in
two scenarios (Fig. 4, A and B). In the ideal
case, the composition-TEC curve is simple and

A ‘Ideal’ B ‘Real-world’ E FeCoNiCr HEAs FeCoNiCrCu HEAs
14 !
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Fig. 4. Analysis of the results after six iterations in the active learning
loop. (A and B) Representation of the alloy discovery process in the ideal
scenario and the real world. (C and D) Cr and Cu distribution histogram.
The Cr histogram has various concentrations (from O to 20%). By contrast,
the vast majority (>95%) of the compositions have zero Cu concentration. The
lowest known TEC as a change of composition is plotted as a solid line, and the
unknowns are shown as a dashed line. Gray arrows illustrate the discovery paths
of HEA-GAD-TERM. (E) Experimental and predicted TEC of the FeNiCoCr and
FeNiCoCrCu HEAs. (F) MAPE of active learning. The dots represent the MAPE
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Temperature (K)

between experiment and predictions. Rapid decrease of the MAPE is akin to a
natural learning process. (G and I) Electron backscatter diffraction (EBSD)
phase and boundary maps of the A2 alloy. (H and J) EBSD phase and
boundary maps of the A3 alloy. (K and L) Change of lattice constants with

temperature in the A2 [(Fe]_, Fel)so1(Ni{_, Ni)67(Col_, Cot)261(Cr{_, Crl)71]
and A3 [(FeLnFef])Q_y(NiLan )9 1(001 T]COl)39 5(C|’l CrT)g 7] alloys

for different values of n, where n denotes the pseudo-alloy concentration
(0 <1 = 0.50).
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convex, which means that this specific relation
is readily learned and “never forgotten.” Even
with a small dataset present, the global maxima
can be easily found regardless of their initial
starting points: Both path 1 and path 2 can lead
to the Invar point. However, in the reality, the
lowest TEC curve is highly nonlinear because
of the complex underlying composition-property
relations, and the composition landscape re-
mains largely unknown. Both experts with ap-
propriate domain knowledge and algorithms
will have to explore the unknown territory and
accumulate knowledge about the system by
making mistakes. Furthermore, the composi-
tion axis is multidimensional and therefore the
design space is huge. Therefore, the chosen
paths, available data, and starting points will
notably influence the final results. Path 1 may
lead to local minima, whereas path 2 is rather
difficult initially, and multiple high TEC non-
Invar HEAs can be discovered before the even-
tual Invar discovery.

We provide the concentration histogram of
Cr and Cu in the current dataset in Fig. 4, C
and D. We also plotted the observed lowest
TEC curve to illustrate the discovery path in
two HEAs. The GAD-TERM framework shows
its high efficiency by quickly identifying the
Invar points in the first iteration (A3 and B2).
However, the algorithm is designed for ex-
ploration. The algorithm inevitably discov-
ers some non-Invar alloys along the path (e.g.,
A4 and A8, denoted by gray arrows in Fig. 4, C
and D). As mentioned before, the discovery of
FeNiCoCr HEAs and FeNiCoCrCu HEAs are
different tasks because of the different data
distribution. The distribution of Cu in the
alloys is extremely imbalanced (Fig. 4D); that

is, by far most of the alloys in the dataset do
not contain Cu at all and only a few alloys
have 5% Cu. Such distributional difference
likely accounts for the substantially different
learning behavior observed (Fig. 4, E and F).

We show the measured and predicted TEC
values for FeNiCoCr and FeNiCoCrCu HEAs in
Fig. 4E and the mean absolute percentage er-
ror (MAPE) between experiments and predic-
tions versus experimental iteration in Fig. 4F,
with each exploitation and exploration step
marked by arrows. For FeNiCoCr HEAs, the
average experimental TEC value gradually de-
creases: 6.49 x 107 per degree kelvin (/K) in
the first, 5.61 x 10"%/K in the second, and
3.65 x 107°/K in the third iteration (Table 1).
Exploration and exploitation take place alter-
nately, akin to a natural learning process, and
such a plot represents the “learning curve” of
the HEA-GAD-TERM model. The learning curve
indicates a progressive trend as the MAPE
error decreases notably (from 1.5 to 0.2).
Because of the exploration step, the model
predictions deviate considerably from their
experimental counterparts in the first itera-
tion. Alloy A3 (Table 1) has the highest pre-
dicted TEC value (4.39 + 0.79 x 107%/K), but
the experimental TEC value shows exactly the
opposite, namely, the lowest measured TEC
value (1.41 x 107%/K). In the second and third
iterations, the standard deviation of the ex-
perimental TEC values declines substantially
(3.34 x 107%/K and 1.46 x 107%/K, respectively).
This demonstrates excellent exploration prog-
ress in which HEA-GAD-TERM converges
quickly and can predict TEC with high ac-
curacy after only three iterations. Conversely,

FeNiCoCrCu shows a different learning behav-

ior. The discovery path shows no significant
improvements, from experimentally mea-
sured 6.26 x 10~%/K in the first iteration, to
6.64 x 107/K in the second, and 5.67 x 10~/K
in the third (for more numerical details, see
Table 1). We can attribute this trend to the lack
of Cu-containing FeNiCoCrCu data (only three
data points are available at the beginning; Fig.
4D). Despite this shortcoming, the experimen-
tal mean deviation narrows down, from 33.9%
for the first iteration to 10.2% in the last ite-
ration, indicating a gradually improved model
accuracy.

To reveal the physical origin behind the
properties, we show experimental and DFT
analyses of the A2 and A3 alloys (TEC = 10.52 x
10"%/K and 1.41 x 10~%/K, respectively, in Fig. 4,
G to L). It can be seen in Fig. 4, G to J, that A2
and A3 alloys have a single-phase bece and fce
structure, respectively. The partial disordered
local moment (PDLM) model within the co-
herent potential approximation simulations
(40) reveals that the Invar effect is qualitatively
related to such volume reduction at finite-
temperature PDLM phase compared with the
0 K ferromagnetic ground state (41). In con-
trast to the fcc A3 alloy, the bec A2 alloy, with a
higher T, around 950 K, exhibits a slight up-
ward trend of the lattice parameter a. Using
DFT simulations, we also validate that if the A2
alloy can be stabilized in its fcc phase state, then
an Invar effect can be realized as well [Fig. 4, K
and L, red dash-dot line; for simulation de-
tails, see (31)]. The TEC value is also affected
by the occurrence of phase transformations in
some HEAs (I8, 20). Our measurements show
that the low TEC values of our A3 alloys are
not caused by any phase transformation.

A B Compositionally complex alloys
=y _ MnFeNi "
_a Cantor alloy 0 ® o This work
i Y e '\“
154 HEAs + MEAs . | & / Invar (g™, 9
A s sh4444 CrFeNi ok 2
P - o CrCoNi = LAY . 2
A% a b = 54 ok &3 0
< &y shAEA—4% FaCoNi X Kovar % ...~ =
‘s * FeCoNiMnCu S S T §
= © o o000 =
w10 L)
i = o ® o °° ° . 2
[ P ° [ ] ° -E
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. 1 ) 7]
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Anti-Invar MEAs
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Fig. 5. Summary of the properties of the ML-designed HEAs. (A) TEC of the
ML-designed HEAs as a function of the change in temperature. As a comparison,
we plotted the thermal expansion curve of the HEAs and MEAs. A3 and A9
FeNiCoCr HEAs show extremely low TECs around 2 x 107°/K at 300 K, which can
be used as Invar alloys. B2 and B4 FeNiCoCrCu HEAs show low TECs around

Rao et al., Science 378, 78-85 (2022)
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Configurational entropy (R)

5 x 1078/K at 300 K, which qualifies them as Kovar alloys. (B) Configurational
entropy plotted against the TEC values for various known alloys and alloys
discovered in this work. ML enables this approach to efficiently discover new
alloys with excellent properties (high resistance to thermal cycles) in an infinite
phase spectrum (compositionally complex alloys).
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We show the TEC as a function of tempera-
ture for the two Invar alloys (TEC =2 x 107°/K)
and two Kovar alloys (TEC =5 x 107%/K) that
we developed in Fig. 5A, compared with HEAs
and medium-entropy alloys (MEAs) (19, 42).
The new alloys show abnormally low TEC val-
ues compared with the HEAs, MEAs, and con-
ventional alloys previously reported (Fig. 5B)
(43-45). Most Invar alloys show a low TEC but
also low configurational entropy. The Invar
alloys developed in this work offer a good com-
bination of low TEC and high configurational
entropy. This indicates the high potential of
the HEA concept for the design of Invar alloys,
which, beyond their beneficial thermal expan-
sion response, also offer high strength, ductil-
ity, and corrosion resistance.

Conclusions

Understanding the underlying physics behind
composition-property relations is the key mis-
sion in alloy design, a task particularly chal-
lenging in the case of compositionally complex
materials. In principle, HEAs with interesting
features can hide in practically infinite and
vastly unexplored composition space, a sce-
nario that puts targeted alloy design to its
hardest test. We have therefore developed a
widely applicable active learning framework
that combines a generative model, regression
ensemble, physics-driven learning, and experi-
ments for the compositional design of HEAs.
Our method demonstrates its proficiency in
designing high-entropy Invar alloys using
very sparse experimental data. The entire
workflow required only a few months, in con-
trast to the conventional alloy design approach,
which requires years and many more experi-
ments. We expect that more than one prop-
erty can be optimized simultaneously using
the GAD-TERM framework in the composi-
tional spectrum of HEAs.
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