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Ultrabroadband and band-selective thermal 
meta-emitters by machine learning

Chengyu Xiao1,2, Mengqi Liu3,4, Kan Yao5, Yifan Zhang1,2, Mengqi Zhang1,2, Max Yan6, 
Ya Sun1,2,3, Xianghui Liu1, Xuanyu Cui1,2, Tongxiang Fan1, Changying Zhao4, Wansu Hua1,2, 
Yinqiao Ying1,2, Yuebing Zheng5,7 ✉, Di Zhang1 ✉, Cheng-Wei Qiu3,8 ✉ & Han Zhou1,2 ✉

Thermal nanophotonics enables fundamental breakthroughs across technological 
applications from energy technology to information processing1–11. From thermal 
emitters to thermophotovoltaics and thermal camouflage, precise spectral 
engineering has been bottlenecked by trial-and-error approaches. Concurrently, 
machine learning has demonstrated its powerful capabilities in the design  
of nanophotonic and meta-materials12–18. However, it remains a considerable 
challenge to develop a general design methodology for tailoring high-performance 
nanophotonic emitters with ultrabroadband control and precise band selectivity, 
as they are constrained by predefined geometries and materials, local optimization 
traps and traditional algorithms. Here we propose an unconventional machine 
learning-based paradigm that can design a multitude of ultrabroadband and 
band-selective thermal meta-emitters by realizing multiparameter optimization 
with sparse data that encompasses three-dimensional structural complexity and 
material diversity. Our framework enables dual design capabilities: (1) it automates 
the inverse design of a vast number of possible metastructure and material 
combinations for spectral tailoring; (2) it has an unprecedented ability to design 
various three-dimensional meta-emitters by applying a three-plane modelling 
method that transcends the limitations of traditional, flat, two-dimensional 
structures. We present seven proof-of-concept meta-emitters that exhibit superior 
optical and radiative cooling performance surpassing current state-of-the-art 
designs. We provide a generalizable framework for fabricating three-dimensional 
nanophotonic materials, which facilitates global optimization through expanded 
geometric freedom and dimensionality and a comprehensive materials database.

Thermal emission is a fundamental feature of nature. Nanophotonic 
engineering is used to tailor the spectrum, directionality and polariza-
tion of thermally emitted light, with a broad range of applications3–11. For 
each application, the ideal spectral profiles of thermal emitters must 
be carefully designed to accommodate variations in settings, whether 
extraterrestrial or terrestrial2, atmospheric conditions19,20, operational 
temperatures11 or humidity levels2 (Supplementary Fig. 1). For example, 
it is essential for a band-selective thermal emitter to exhibit near-unity 
emissivity in the transparent atmospheric window and near-unity 
reflectance at non-atmospheric-window wavelengths for terrestrial, 
subambient, passive cooling21,22 and for mitigating the urban heat-island 
effect7. Conversely, a broadband emitter with high emissivity across 
the entire mid-infrared waveband is crucial for daytime above-ambient 
cooling23,24 and for extraterrestrial applications25. Consequently, the 
design of thermal emitters necessitates the optimization of thermal 

emission bandwidths, band positions and numbers, along with simulta-
neous control across the ultraviolet to infrared spectrum22,24. Previously 
reported emitters have been limited and were mostly based on previous 
empirical or physics-based knowledge using trial-and-error2. A general 
design methodology is, therefore, essential for the efficient and pre-
cise design of customized emitters with the desired spectral profiles.

Artificial intelligence, particularly machine learning (ML), has revolu-
tionized and dramatically speeded up the design of nanophotonic and 
meta-materials12–18,26–28. However, two substantial challenges persist. 
One challenge is the lack of automated inverse design methods capa-
ble of simultaneously achieving global optimization across diverse 
structures and several materials. Traditional optimization techniques, 
such as gratings29, multilayers30–32 and predominantly simple meta-
structures17,33–36, are constrained by a set of predefined geometries 
and materials, which restricts their capacity for multistructure and 
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multiparameter optimization. Methods like genetic algorithms and 
simple ML algorithms14 are prone to falling into local optimization 
traps37. These bottlenecks lead to limitations such as narrow band-
widths, restricted band selectivity and suboptimal photonic proper-
ties13. Consequently, there is a pressing need for global optimization 
that can leverage expanded geometric freedom and dimensionality 
and a comprehensive materials database to create high-performance, 
thermal, nanophotonic materials through a flexible spectral engineer-
ing capability.

A second challenge is encountered in the design of complex and 
diverse 3D photonic structures. Photonic engineering typically param-
eterizes features like length and thickness for simple geometric primi-
tives29–32. However, traditional ML methods are predominantly limited 
to two-dimensional structures due to the absence of robust descriptive 
and parameterization techniques that can describe a multitude of 
higher-dimensional structures. Addressing these gaps necessitates the 
development of effective descriptors and algorithms that can describe 

various complex 3D photonic structures and handle computational 
complexity, which is a formidable challenge. To date, methodologies 
addressing these challenges remain elusive and have not yet been fully 
developed. Further development of general advanced optimization 
schemes will be pivotal in tackling such inverse design challenges.

We have developed an unconventional, general, ML-based paradigm 
for the multi-objective design and exploration of nanophotonic ther-
mal emitters. It is the most extensive design platform for accurately 
designing a multitude of ultrabroadband and band-selective thermal 
meta-emitters (TMEs), and therefore, it can guide the inverse design of 
nanophotonic and meta-materials. Our approach offers three distinct 
advantages: (1) It has an automated platform for unprecedented global 
optimization using 3D structural primitives, spatial arrangements and 
a comprehensive materials dataset (Fig. 1a) in a vast parameter space 
(Fig. 1b). The algorithm has successfully designed over 1,500 types of 
meta-emitters exhibiting desired photonic properties. (2) We have 
established an approach for designing 3D photonic structures using 
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Fig. 1 | ML-based general inverse design paradigm. a, The proposed ML-based 
approach incorporates 3D structural primitives and spatial arrangements (left) 
and a database of diverse candidate materials (right). b, It has the potential to 
deliver global optimization solutions. c, The method can feasibly meet multi- 
objective and customer-specific spectral demands. d, Design wavelength range 

compared to previous ML-based studies. e, Comparison of design space 
coverage for this work and previous ML-based work, including the number of 
meta-emitter candidates, material diversity, bandwidth ranges and dimensions 
in a simultaneous multi-objective optimization capability.
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a three-plane modelling method, which enhances design flexibility in 
terms of dimensionality and surpasses the limitations of traditional 
two-dimensional structures. (3) We have validated our findings in 
experiments that demonstrated the superior optical and radiative 
cooling performance of our TMEs compared to current state-of-the-art 
designs. This research may facilitate the straightforward identification 
of promising meta-emitters that have the potential for manufacturing 
scalability and practical applicability from diverse candidates.

Overview of the inverse design paradigm
Our design approach diverges significantly from conventional empiri-
cal engineering methods (Supplementary Fig. 2). We concentrated on 
constructing an expansive, parameterized design space. By combin-
ing a powerful geometric/material descriptor with ML algorithms, 
our approach completes an exhaustive exploration across the design 
space, thus enabling effective inverse nanophotonic engineering. 
Three critical aspects of our framework merit consideration: (1) the 
comprehensive database features 3D structural primitives and spatial 
arrangement combinations (Fig. 1a, left); (2) selecting suitable materials 
(Fig. 1a, right) involves considering several factors, including the elec-
tronic bandgap, refractive index, and chemical and thermal stability; 
(3) a unified descriptor system translates complex 3D structural and 
material data into computational parameters, thereby maximizing 
design flexibility. Collectively, these elements expand the search range 
of the algorithm and enable the exploration of previously inaccessible 
parts of the design space.

The proposed design concept is general, and it leverages a vast library 
of 3D photonic structures and diverse material systems. Numerous 
functionalities and flexible spectral tailorability can be achieved 
through various geometric/material combinations (Fig. 1c). Our plat-
form stands out from previous ML-based approaches due to its unique 
advantages. It has flexible and ultrabroadband multispectral tailor-
ability from the ultraviolet to the mid-infrared (0.25–25 μm), as shown 
in Fig. 1d. It can automatically combine and tailor several 3D photonic 
structures and materials to produce the desired spectral characteris-
tics, thus fulfilling concurrent multi-objective design requirements 
(Fig. 1e).

ML-based inverse design process and descriptors
A critical step was to develop effective, parameterized descriptors for 
both geometric and material properties. We compiled a comprehensive 
‘library’ of structural primitives inspired by natural prototypes38–43—
including spheres, cylinders, ridges and triangular prisms—along with 
their spatial arrangements (Supplementary Fig. 3 and Supplementary 
Table 1). These designs have evolved in biological systems, which exhibit 
diverse 3D hierarchical micro- and nanoscale structures with excep-
tional optical and thermal properties. Using our library, which com-
prises 32 basic 3D primitives (Fig. 2a and Supplementary Fig. 4), various 
spatial arrangements (Fig. 2b) and 30 candidate materials (Fig. 2d), our 
ML algorithm can generate tens of thousands of meta-emitter designs.

We initiated our ML process by defining a large design space with geo-
metric and material information. We developed an efficient geometric/
material descriptor capable of representing complex 3D hierarchical 
structures. Specifically, a three-plane modelling method was created 
to describe structural primitives (Fig. 2c). Each primitive is divided 
into three segments: a central plane (first plane), an upper plane (sec-
ond plane) and a lower plane (third plane). Simple structures, such as 
hemispherical or cylindrical shapes, require only two planes, whereas 
more complex two-part structures necessitate all three planes, such 
as spherical, spherical-top cylinder and so on. Key parameters—such 
as size and shape—define the geometry of each plane, thus captur-
ing the spherical, cylindrical or polygonal features as well as dimen-
sions and edge length. Parameters for connection, distance, rotation 

and shelling (core-shell) further characterize the interrelationships 
between planes and the placement status of primitives. This three-plane 
method reduces each complicated 3D primitive to 11 essential vari-
ables, which enables the efficient mathematical encoding of typical 3D 
structural primitives (Supplementary Figs. 5 and 6). Additionally, spa-
tial arrangements, including ordered, random and gradient (Fig. 2b), 
are described with displacement vectors (Supplementary Note 1 and 
Supplementary Fig. 7), yielding 37 parameters that fully encapsulate 
the 3D geometric information.

Subsequently, we selected materials based on their dielectric 
properties and developed a material descriptor for the ML process 
(Fig. 2d and Supplementary Note 2). To maximize solar reflectivity in 
the ultraviolet–visible–near-infrared range (0.25–2.5 μm), we evalu-
ated 30 candidate materials with large electronic bandgaps and a high 
average refractive index (n) (Supplementary Fig. 8). For the infrared 
emissivity, we prioritized polymers and inorganic materials exhibiting 
phonon-polarization resonances to ensure absorption across the infra-
red band (3–25 μm) (Supplementary Table 2). The optical properties of 
each material were defined by its complex refractive index (ñ = n + ki) 
(Supplementary Fig. 9). By integrating the material and geometric 
information about the structural primitives, we formulated a com-
bined design descriptor (Fig. 2e and Supplementary Table 3), which 
captures the complex design space and enables global inverse design. 
This combined descriptor is the input to the prediction process of our 
ML framework. The outcomes are the solar reflectivity and infrared 
emissivity spectra (Supplementary Note 3).

Training the algorithm platform
The ML-based design framework has four main steps (Fig. 2f): (1) estab-
lishing a database; (2) developing the forward prediction networks;  
(3) implementing an inverse design framework using a conditional gen-
erative adversarial network (Supplementary Note 4 and Supplementary 
Fig. 10); and (4) validating it through simulations and experiments. We 
constructed a comprehensive dataset of 57,110 randomly generated 
meta-emitters with details of structural primitives, spatial arrange-
ments, constituent materials and spectral responses (Supplementary 
Fig. 11). To enhance data quality, we employed the Kennard–Stone 
algorithm to select a representative, uniformly distributed subset of 
32,207 samples, allocating 70% for training and 30% for testing. This 
preprocessing minimized the overfitting risk by ensuring we used a 
diverse sample distribution, which bolstered the generalizability and 
predictive accuracy of the model44 (Supplementary Fig. 12).

Because of the dimensional mismatch between geometric and mate-
rial information, using raw design vectors could hinder training. To 
solve this, we applied autoencoders for dimensional reduction of both 
design and response vectors before inputting them into a fully con-
nected neural network for forward prediction (Supplementary Table 4), 
which improved the accuracy over raw data (Supplementary Fig. 12). 
However, challenges in achieving an accurate inverse design arose from 
the different convergence rates of the discriminator and generator in 
the conditional generative adversarial network. To address this, we 
pretrained the generator, introduced 10% dataset perturbations and 
applied a weighted loss function to synchronize the training speeds 
(Supplementary Note 5 and Supplementary Fig. 13).

Inverse multi-objective design of TMEs
To verify the design capabilities of our framework, we developed 
seven distinct TMEs tailored to specific applications (Supplementary 
Fig. 14): (1) TME-1 is a broadband meta-emitter has high emissivity 
across infrared wavelengths (3–25 μm) for above-ambient radiative 
cooling or extraterrestrial applications23,24; (2) TME-2 is a band-selective 
meta-emitter with peak emissivity in the first atmospheric window 
(8–13 μm) for terrestrial subambient radiative cooling2; (3) TME-3 is 
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a dual-band-selective meta-emitter with high emissivity across two 
atmospheric windows (8–13 and 16–25 μm)19; (4) TME-4 is a ther-
mal camouflage meta-emitter with low emissivity within ranges 3–5 
and 8–13 μm and high emissivity outside the atmospheric window 
(5–8 μm)11; (5) TME-5 is a two-sided Janus meta-emitter for daytime 
subambient cooling with a broadband high-emissivity side and for 
night-time supra-ambient warming with the low-emissivity side;  
(6) TME-6 and TME-7 are meta-emitters with customized spectra.  
Leveraging the processing capabilities of our trained conditional gen-
erative adversarial network could provide appropriate meta-emitter 
candidates for any requested spectrum and predict their performance 
metrics.

For each TME, we generated 2,000 models, screened to a 0.15 
threshold (Supplementary Note 6), resulting in 545, 270, 121, 197, 
146, 171 and 91 qualified designs, respectively, all meeting the spectral 
targets (Supplementary Figs. 16–18). We further validated 21 repre-
sentative designs using finite-difference time-domain simulations 
(Fig. 3a and Supplementary Fig. 19). Notably, our methodology yielded 

a variety of hierarchical metastructures, including both conventional 
configurations (for example, photonic crystals and multilayered 
stacks) and previously unidentified designs that go beyond tradi-
tional empirical intuition (Fig. 3b and Supplementary Figs. 20–26). 
Furthermore, the framework can generate 2,500 candidates per sec-
ond, vastly outpacing conventional optimization techniques (Sup-
plementary Fig. 27).

We further analysed material and structural utility across wave-
lengths, which revealed clusters based on ML-identified physical laws 
(Fig. 3c). Although this analysis does not exhaust all potential possibili-
ties, it illustrates that our framework can extract physical principles 
from complex datasets in the design of meta-emitters. This clustering 
aids in targeting subcategories of materials and structures without 
compromising optical responses, thus empowering viable designs 
tailored to specific spectral and stability requirements. For instance, for 
TME-1–TME-3, solutions can be visualized by auxiliary lines on the data 
graph, which streamlines the material and structural selection. Further-
more, using our automated selection algorithm and a relatively large 
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pool of materials, we can efficiently identify high-temperature-tolerant 
meta-emitters that simultaneously meet stringent thermal stability 
requirements and desired optical performance criteria (Fig. 3d and 
Supplementary Table 5).

Experiments and performance assessment
To validate our designs, we synthesized four representative meta- 
emitter designs (TME-1 to TME-4) for experimental demonstration 
(Fig. 4a–c and Supplementary Figs. 28–32). Notably, the measured spec-
tra closely matched the predicted responses from our ML framework 

(Fig. 4d), confirming the precision and effectiveness of our algorithms. 
For instance, TME-1, a broadband meta-emitter, with detailed features 
in Fig. 3b (TME-1.3) and Fig. 4a, achieved a solar reflectance of over 
0.96 in 0.25–2.5 μm and a broadband infrared emissivity of 0.92 across 
3–25 μm (Fig. 4d, with underlying mechanisms in Supplementary 
Figs. 33 and 34). TME-2, a band-selective meta-emitter, has a bilayer 
structure (TME-2.1) (Figs. 3b and  4b). The porous Al2O3 enhances the 
absorptivity within the first atmospheric window through cavity reso-
nances (Supplementary Fig. 35) while reflecting other wavelengths. 
Our experimental measurements confirmed a near-ideal hat-shaped 
emissivity spectrum (Fig. 4d), with a high solar reflectivity of 0.96 and 
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Fig. 4 | Representative TMEs for proof-of-concept experimental validation 
and performance assessment. a–c, Photographs (top) and scanning electron 
microscopy images (bottom) of the fabricated TME-1–TME-3. a, TME-1 is a 
bilayer film composed of porous PVC embedded with Al2O3 nanoparticles,  
with SiO2 particles distributed on top. b, TME-2 is a thin film covered by a 
honeycomb-like porous array of Al2O3. c, TME-3 is composed of a porous PTFE 
film coated with CaCO3 particles. d, Predicted (scatter plots) and measured 
(lines) reflectivity and emissivity of the designed TMEs. e,f, Comparisons  

of emissivity, solar reflectivity and wavelength tailorability between the 
generated TME-1 (e) and TME-2 (f) and other state-of-the-art systems. g, Daytime 
continuous measurement of the subambient radiative cooling performance on 
18 July 2024 in Shanghai (31° 24′ 19″ N, 121° 29′ 22″ E), with solar intensities (Isolar) 
reaching up to 1,150 W m−2. h, Temperatures of different samples measured in  
an urban heat-island set-up on 23 July 2024. i, Calculated cooling power and heat 
gain across various scenarios for TME-1 to TME-3. Scale bars, 5 cm (a, top), 5 µm 
(a, bottom), 2 cm (b, top), 1 µm (b, bottom), 20 cm (c, top), 2 µm (c, bottom).
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an average emissivity of 0.92 across the first atmospheric window. 
TME-3, a dual-band-selective meta-emitter, with detailed features in 
Fig. 3b (TME-3.1) and Fig. 4c, displayed exceptional optical properties, 
including emissivity reaching up to 0.95 in the first atmospheric window 
(8–13 μm) and 0.90 in the second atmospheric window (16–25 μm), 
while maintaining a high reflectance in the remaining mid-infrared and 
solar bands. The high dual-band-selective emissivity is attributed to 
the absorption bands of CO3

2− (875–1,425 cm−1) and C–F bonds (400–
540 cm−1) in polytetrafluoroethylene (PTFE) (Supplementary Table 2). 
The solar reflectivity was enhanced by Mie scattering of CaCO3 spheres 
and the micro- and nanopores within the PTFE substrate.

To quantitatively assess the multispectral wavelength tailorability, 
we introduced two metrics: the nominal broadband emissivity η, which 
is a measure of the broadband-emissive characteristics of TME-1, and 
the selective ratio γ, which is a measure of the band selectivity of TME-2 
(Methods)7. Notably, our ML-based approach efficiently generates 
a great quantity of TME designs with excellent optical performance 
that surpasses their state-of-the-art material counterparts in terms of 
solar reflectivity, emissivity and wavelength tailorability, as compared 
in Fig. 4e,f and Supplementary Fig. 36. Notably, TME-1 demonstrated 
near-unity nominal broadband emissivity, affirming the ultrabroad-
band optimization capabilities of our approach compared with meth-
ods in other works5,6,9,20,39,45–48 (Fig. 4e and Supplementary Table 6). 
Moreover, TME-2 achieved a selective ratio of up to 5.52, which is 2 
times higher than typical values reported so far3,4,7,21,49,50 (Fig. 4f and 

Supplementary Table 6). These results underscore the ability of the 
ML approach to meet stringent spectrum engineering requirements 
for ultrabroadband, mono-selective or dual-selective applications.

We experimentally evaluated the terrestrial radiative cooling per-
formance of TME-1, 2 and 3 under various application scenarios, focus-
ing on weather conditions including ambient temperature, relative 
humidity and ground temperature. In outdoor measurements, all three 
meta-emitters maintained subambient temperatures (Fig. 4g), but their 
distinct emission spectra led to different cooling behaviours. Under 
clear skies, TME-1 achieved a significant temperature drop of 5.9 °C at 
midday due to reduced atmospheric water vapour, which reduced the 
heat load from counter radiation outside the atmospheric windows. 
However, cloudy conditions increased the absorption of counter radia-
tion, which reduced the efficiency of TME-1 (Supplementary Fig. 37), 
whereas TME-2, with its band-selective emission, achieved a 4.6 °C 
subambient drop. In urban scenarios (vertically placed facing a wall; 
Fig. 4h and Supplementary Fig. 38), TME-2 achieved superior perfor-
mance, maintaining temperatures 2.5 and 5.3 °C lower than TME-1 and 
commercial white paint, respectively (Fig. 4h). This is attributed to 
its ability to emit heat while selectively blocking unwanted thermal 
radiation from the surroundings (maximum of approximately 70 °C).

We conducted an in-depth analysis of the cooling power under vari-
ous scenarios: clear days, cloudy days and urban environments (Fig. 4i 
and Supplementary Note 7). Under clear daytime conditions, TME-1 and 
TME-3 exhibited higher cooling powers of approximately 120 W m−2, so 
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Nature  |  Vol 643  |  3 July 2025  |  87

that they efficiently dissipated heat into space with minimal interfer-
ence from water vapour and clouds. By contrast, under cloudy condi-
tions, the transmittance of the atmospheric windows was significantly 
reduced due to increased water vapour concentration, resulting in a 
substantial decline in the net cooling power (Supplementary Fig. 39). 
In urban environments, TME-2 outperformed both TME-1 and TME-3 
with an obviously lower heat gain because of its spectral selectivity.

For extraterrestrial applications, TME-1 proved particularly well 
suited for deployment in such extreme environments, due to its ability 
to reflect nearly all solar irradiation while maximizing infrared emis-
sion24. Moreover, it has considerable operational stability (Supplemen-
tary Fig. 40). Details of this theoretical CubeSat study are provided in 
Supplementary Note 8 and Supplementary Fig. 41.

Applicability and energy-saving evaluation
Drawing from thousands of generated models, we can easily identify 
meta-emitters that meet manufacturability criteria for large-scale 
production (Supplementary Tables 7–12). For instance, TME-3 can be 
applied easily, just like using paint (Supplementary Fig. 42), and its 
room-temperature and solution-based fabrication can be used to coat 
various surfaces like bricks, metals, plastics and glass (Supplementary 
Fig. 43). To evaluate its practical cooling effect, we constructed three 
identical model houses (Fig. 5a,b). Real-world thermal profiling during 
peak solar irradiance (4-hour midday monitoring period) demonstrated 
that the TME-3-coated roof surface maintained temperatures 5.6 °C 
below conventional white paint and 21 °C under standard grey-coated 
benchmarks (Fig. 5c). This highlights its practical potential for urban 
heat mitigation and, thereby, improving habitability in a hot climate. 
To evaluate the potential reduction in electricity and CO2 emissions 
on a larger scale, we simulated the energy consumption of a typical 
four-storey midrise apartment building with a TME-3-coated roof 
(Supplementary Fig. 44). Considering the energy used by heating, 
ventilation and air-conditioning systems, the application of TME-3 as 
an external envelope material demonstrated impressive energy-saving 
performance in the selected cities, particularly in tropical regions 
(Fig. 5d and Supplementary Figs. 45–47). In extreme hot climates, the 
annual energy savings for indoor air-conditioning could reach up to 
75 MJ m−2, equivalent to 57.2 GJ (approximately 15,800 kWh) per year 
(Fig. 5e). Furthermore, the versatile applications for TME-3 include sun-
shades, textiles and coloured wearables (Supplementary Figs. 48–50).

Conclusions
We have developed a general design platform integrating machine 
intelligence, computational simulation and experimental validation 
to autonomously discover and optimize a diverse family of TMEs. 
This framework not only achieves an exponential expansion of the 
thermal metamaterial design space but also enables fundamental 
advances in nanoscale light–matter interactions. Through precise 
spectral engineering, we have developed materials ready for scalable 
deployment across diverse infrastructure applications. Our general-
ized ML-driven framework, which has enlarged the design space for 
global TME designs, is key to the next paradigm shift in inverse design. 
When more structural primitives, spatial arrangements and materials 
features are included, this workflow will probably be applicable to a 
wide range of nanophotonic materials, with capabilities extending to 
coloured meta-emitters (Supplementary Fig. 51), meta-optics, topo-
logical photonics and beyond.
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Methods

Fabrication of TMEs
TME-1 was prepared using a template method (Supplementary Fig. 29). 
The fabrication began with cleaning a silicon wafer using a 150-W oxy-
gen plasma for 300 s, followed by spin-coating a 1.2-μm-thick positive 
photoresist at 2,500 rpm for 60 s and hard-baking at 100 °C for 90 s. 
The wafer was then aligned with a photomask, exposed to ultraviolet 
light for 15 s using a proximity lithography system (SUSS MA8/BA8), 
developed in a tetramethyl ammonium hydroxide solution for 45 s 
and rinsed. Reactive ion etching with sulfur hexafluoride (SF6) was 
employed to form a hemispherical pore structure and complete the 
silicon mould. To facilitate demoulding, the mould was treated with 
1H,1H,2H,2H-perfluorodecyltriethoxysilane (Macklin H817036) for 
30 min. A degassed polydimethylsiloxane (PDMS) solution (Supelco 
57928-U), prepared with a curing agent in a 1:12 (v/v) ratio, was poured 
onto the silicon mould and cured at 60 °C for 3 h, yielding the PDMS 
template. Polyvinyl chloride (PVC, K value 62–60) particles (16 wt%) 
were then dispersed into a 45 °C N,N-dimethylformamide (DMF) solu-
tion under continuous stirring, cast onto the PDMS template and left 
to solidify in air such that air-induced phase separation resulted in a 
porous structure. Finally, the structured PVC composite was briefly 
immersed in a 5% aqueous DMF solution containing silica (SiO2) micro-
particles (1 μm in diameter) floating on the liquid surface and left for 
10–15 s to allow slight dissolution of the surface microstructure, lead-
ing to the spontaneous firm adsorption of SiO2 onto the PVC surface, 
thereby forming the final TME-1 sample. Owing to the high accessibil-
ity of PDMS templates, splicing technology can be used to fabricate 
large TME-1 films.

The free-standing band-selective TME-2 was fabricated using 
two-step anodization (Supplementary Fig. 30). High-purity alumin-
ium foil (Al, 99.999%, Macklin, thickness of 0.5 mm) was first cleaned 
sequentially in acetone, ethanol and deionized water, followed by 
electrochemical polishing in a perchloric acid (HClO4) and ethanol 
solution (1:4 v/v) at 20 V for 5 min to ensure a smooth surface. The first 
anodization was conducted in a 0.3 M oxalic acid solution at 2 °C under 
a d.c. voltage of 125 V for 8 h, forming a disordered porous alumina 
(Al2O3) layer, which was subsequently removed by chemical etching in 
a solution containing 6 wt% phosphoric acid (H3PO4) and 1.8 wt% HClO4 
at 60 °C for 50 min. A second anodization was then performed under 
identical conditions for 6 h, yielding a well-ordered porous alumina 
(Al2O3) structure with an initial pore diameter of approximately 240 nm. 
To achieve the target pore size, the sample underwent pore widening 
in 5 wt% H3PO4 at 30 °C for 60 min, resulting in a final structure with 
uniform hexagonally arranged pores of larger diameter, thus forming 
the desired band-selective TME-2.

The TME-3 film was also prepared by an air-induced phase separation 
method (Supplementary Fig. 31). First, low-density polyvinylidene 
fluoride (PVDF) was dissolved in DMF at 45 °C under stirring to form a 
homogeneous dilute solution with a concentration of 3 g per 100 ml. 
The PVDF functioned as a binder. To preserve the band selectivity, the 
concentration of PVDF had to be maintained at a minimum level. After 
standing for 3 h, calcium carbonate (CaCO3) microparticles (diameter 
of approximately 2 μm) and PTFE nano-powders (diameter of less than 
30 nm) were added to the solution in ratios of 10.1 g per 100 ml and 4.5 g 
per 100 ml, respectively, followed by stirring at 45 °C to ensure uniform 
dispersion. The slurry-like TME-3 precursor solution can be deposited 
with several different coating methods (spin, spray or brush coating), 
depending on viscosity, to facilitate the formation of a film on various 
substrates such as metal, glass or brick. To mitigate shrinkage, the film 
was coated in a cool environment at 20 °C and allowed to dry under 
ambient conditions for 24 h. During this process, phase separation 
occurred, resulting in the formation of a porous structure. Notably, 
CaCO3 microparticles exhibited spontaneous surface aggregation, 
whereas the PTFE was uniformly and densely distributed as the primary 

component within the porous matrix. A TME-3 film was obtained on 
completion of drying.

The TME-4 film was fabricated using a lift-off process (Supplemen-
tary Fig. 32). First, a phosphorus-doped silicon (100) wafer was cleaned 
with oxygen plasma to remove organic contaminants. A 100-nm-thick 
aluminium layer and a 720-nm-thick silicon layer were sequentially 
deposited onto the substrate by electron beam evaporation. Next, 
a layer of positive photoresist was spin-coated onto the sample and 
soft-baked. Ultraviolet lithography was performed using a quartz mask, 
followed by immersion in a wet developer to define the desired pat-
tern. The developed sample was then hard-baked at 100 °C to enhance 
stability. Afterward, 75 nm of aluminium was deposited by thermal 
evaporation. The lift-off process was carried out by placing the sample 
in an acetone solution within a 45 °C water bath for 20 min to dissolve 
the photoresist and remove excess aluminium. Finally, ultrasonic treat-
ment ensured the complete removal of residual contaminants to yield 
a well-defined TME-4 film structure.

Simulation of optical properties
Full-wave simulations conducted by FDTD Solutions (Lumerical Co., 
Ltd) were used to calculate the reflectivity of the solar band (0.25–
2.5 μm) and the absorptivity and emissivity within the infrared band 
(3–25 μm). The microstructural details were abstracted from biologi-
cal prototypes (Supplementary Table 1) and recreated by three-plane 
geometric descriptors in MATLAB R2022b. The 3D structural units 
were assumed to be periodically arranged. Realistic optical properties 
(complex refractive indices) of common materials, obtained from meas-
urements and open-access refractive index databases, were assigned 
to the basic geometries. The reflectivity and transmissivity were cal-
culated by averaging the results for transverse-electric-polarized and 
transverse-magnetic-polarized light to account for the unpolarized 
incident light in experiments.

Optical and morphological characterizations
The solar reflectivity was measured for the wavelength range 250–
2,500 nm with an ultraviolet–visible–near-infrared spectrophotometer 
(PerkinElmer, Lambda 950). The infrared reflectivity R and transmissiv-
ity T were measured using a Fourier-transform infrared spectrometer 
(Thermal Scientific, Nicolet iS50) operated in the range 3–25 μm with 
a gold integrating sphere (Peak Technologies). The absorptivity A was 
determined as A = 1 − R − T. Optical images were taken using Nikon D610 
(visible) and FLIR T630 (infrared) cameras. Scanning electron micros-
copy was done using TESCAN MIRA 3 scanning electron microscope 
and Zeiss Gemini 300 scanning electron microscope.

Nominal broadband emissivity and selective ratio
The nominal broadband emissivity η was calculated as the product 
of the bandwidth coefficient (actual bandwidth divided by the ideal 
bandwidth of 3–25 µm) and the average emissivity within the high- 
emissivity band:
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in which ε(λ) is the emissivity at wavelength λ, and λ1 and λ2 are the start 
and end wavelengths of the design band, respectively. The selective 
ratio γ was defined as the ratio of the average emissivity of the first 
atmospheric window7 to the emissivity of the range outside the first 
atmospheric window (3–8 and 13–25 μm):
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Outdoor and urban thermal measurements
The set-up for outdoor thermal measurement is shown in Supplemen-
tary Figs. 37 and 38. To measure the radiative cooling performance 
when facing towards sky, TME and control samples of 8 cm × 8 cm were 
cut and put into a box made of thermal insulating polystyrene foam 
(100 cm × 70 cm × 80 cm). For each sample, separate chambers were 
formed using polystyrene. The entire foam (except for the sample 
area) was covered by aluminium foil. A solar power radiation meter 
(TES-1333R) was used to record the local solar radiation. The relative 
humidity and ambient temperature were measured using a weather 
meter (Kestrel 5500). The real-time temperature was measured with 
multichannel dataloggers with K/T-type thermocouples. For urban 
heat-island thermal measurements, samples of size 6 cm × 6 cm were 
cut and put into the centre near one side of separate, dedicated thermal 
insulating polystyrene boxes (20 cm × 30 cm × 15 cm). These thermally 
insulated boxes were placed near a wall at the bottom of a 45° slope. 
The apparatus was placed on a light-coloured trestle with a height of 
80 cm to prevent conduction from the ground, which was at 70 °C. To 
measure the practical application performance of the designed TME, 
we applied TME-3 onto the model roofs, clothing surfaces and helmet 
surfaces, and performed thermal measurements in urban areas, specifi-
cally in parks and building complexes.

Simulation of extraterrestrial cooling performance
To explore the radiative cooling performance of broadband TME-1 
in outer space, we used COMSOL Multiphysics to simulate the tem-
perature behaviour of a polar-orbiting satellite operating in low Earth 
orbit (Supplementary Fig. 41). The satellite model was simplified as a 
hollow cube with a side length of 50 cm. The outer surface material was 
set to TME-1 (excluding the antenna), and the frame material was an 
aluminium alloy. There were two constant-power heat sources inside. 
The thermal radiation exchange objects of the satellite were the Earth 
(atmospheric longwave radiation, 3–40 μm), the Sun (solar irradiance 
was assumed to be under air mass zero) and the Universe (cold source of 
4 K). The internal heat conduction of the satellite was automatically set 
by the software. We calculated the temperature changes at the highest 
temperature point of the simulation model under different thermal 
loads (240 and 450 W) and different surface settings. We also explored 
the stability of TME-1 during service in low Earth orbit, as detailed in 
Supplementary Fig. 40.

Data availability
All the data and models used, generated or analysed during the current 
study are available from the corresponding author H.Z. upon request.

Code availability
The code used to construct the dataset and for the inverse design 
of these models is available at Zenodo (https://doi.org/10.5281/
zenodo.15229359)51.
 
51.	 Xiao, C. Ultrabroadband and band-selective thermal meta-emitters by machine learning. 

Code and dataset for inverse design of thermal meta-emitters. Zenodo https://doi.org/ 
10.5281/zenodo.15229359 (2025).
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