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Thermal nanophotonics enables fundamental breakthroughs across technological
applications from energy technology to information processing' ™. From thermal

emitters to thermophotovoltaics and thermal camouflage, precise spectral
engineering has been bottlenecked by trial-and-error approaches. Concurrently,
machine learning has demonstrated its powerful capabilities in the design

of nanophotonic and meta-materials'?8, However, it remains a considerable
challenge to develop a general design methodology for tailoring high-performance
nanophotonic emitters with ultrabroadband control and precise band selectivity,
asthey are constrained by predefined geometries and materials, local optimization
traps and traditional algorithms. Here we propose an unconventional machine
learning-based paradigm that can design a multitude of ultrabroadband and
band-selective thermal meta-emitters by realizing multiparameter optimization
with sparse data that encompasses three-dimensional structural complexity and
material diversity. Our framework enables dual design capabilities: (1) it automates
theinverse design of a vast number of possible metastructure and material
combinations for spectral tailoring; (2) it has an unprecedented ability to design
various three-dimensional meta-emitters by applying a three-plane modelling
method that transcends the limitations of traditional, flat, two-dimensional
structures. We present seven proof-of-concept meta-emitters that exhibit superior
optical and radiative cooling performance surpassing current state-of-the-art
designs. We provide a generalizable framework for fabricating three-dimensional
nanophotonic materials, which facilitates global optimization through expanded
geometric freedom and dimensionality and acomprehensive materials database.

Thermal emission is a fundamental feature of nature. Nanophotonic
engineeringis used to tailor the spectrum, directionality and polariza-
tion of thermally emitted light, with abroad range of applications®* ™. For
each application, the ideal spectral profiles of thermal emitters must
be carefully designed toaccommodate variations in settings, whether
extraterrestrial or terrestrial?, atmospheric conditions®*, operational
temperatures" or humidity levels® (Supplementary Fig. 1). For example,
itisessential for aband-selective thermal emitter to exhibit near-unity
emissivity in the transparent atmospheric window and near-unity
reflectance at non-atmospheric-window wavelengths for terrestrial,
subambient, passive cooling??*and for mitigating the urban heat-island
effect’. Conversely, abroadband emitter with high emissivity across
the entire mid-infrared waveband is crucial for daytime above-ambient
cooling®?* and for extraterrestrial applications®. Consequently, the
design of thermal emitters necessitates the optimization of thermal

emissionbandwidths, band positions and numbers, along with simulta-
neous controlacross the ultraviolet to infrared spectrum??*, Previously
reported emitters have been limited and were mostly based on previous
empirical or physics-based knowledge using trial-and-error®. A general
design methodology is, therefore, essential for the efficient and pre-
cise design of customized emitters with the desired spectral profiles.

Artificial intelligence, particularly machinelearning (ML), has revolu-
tionized and dramatically speeded up the design of nanophotonicand
meta-materials'>®%2% However, two substantial challenges persist.
One challenge is the lack of automated inverse design methods capa-
ble of simultaneously achieving global optimization across diverse
structures and several materials. Traditional optimization techniques,
such as gratings®, multilayers**>? and predominantly simple meta-
structures**7¢, are constrained by a set of predefined geometries
and materials, which restricts their capacity for multistructure and
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Fig.1|ML-based generalinverse design paradigm. a, The proposed ML-based
approachincorporates 3D structural primitives and spatial arrangements (left)
and adatabase of diverse candidate materials (right). b, It has the potential to
deliver global optimization solutions. ¢, The method can feasibly meet multi-
objective and customer-specific spectral demands. d, Design wavelength range

multiparameter optimization. Methods like genetic algorithms and
simple ML algorithms' are prone to falling into local optimization
traps®. These bottlenecks lead to limitations such as narrow band-
widths, restricted band selectivity and suboptimal photonic proper-
ties™. Consequently, there is a pressing need for global optimization
that can leverage expanded geometric freedom and dimensionality
and acomprehensive materials database to create high-performance,
thermal, nanophotonic materials through aflexible spectral engineer-
ing capability.

A second challenge is encountered in the design of complex and
diverse 3D photonicstructures. Photonic engineering typically param-
eterizes features like length and thickness for simple geometric primi-
tives??*2, However, traditional ML methods are predominantly limited
totwo-dimensional structures due to the absence of robust descriptive
and parameterization techniques that can describe a multitude of
higher-dimensional structures. Addressing these gaps necessitates the
development of effective descriptors and algorithms that can describe

Bandwidth (um)

Meta-emitter candidates

compared to previous ML-based studies. e, Comparison of design space
coverage for this work and previous ML-based work, including the number of
meta-emitter candidates, material diversity, bandwidth ranges and dimensions
inasimultaneous multi-objective optimization capability.

various complex 3D photonic structures and handle computational
complexity, which is aformidable challenge. To date, methodologies
addressingthese challenges remain elusive and have not yet been fully
developed. Further development of general advanced optimization
schemes will be pivotal in tackling such inverse design challenges.
We have developed anunconventional, general, ML-based paradigm
for the multi-objective design and exploration of nanophotonic ther-
mal emitters. It is the most extensive design platform for accurately
designing a multitude of ultrabroadband and band-selective thermal
meta-emitters (TMEs), and therefore, it can guide theinverse design of
nanophotonic and meta-materials. Our approach offers three distinct
advantages: (1) It has an automated platform for unprecedented global
optimization using 3D structural primitives, spatial arrangements and
acomprehensive materials dataset (Fig. 1a) in a vast parameter space
(Fig.1b). The algorithm has successfully designed over 1,500 types of
meta-emitters exhibiting desired photonic properties. (2) We have
established an approach for designing 3D photonic structures using
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athree-plane modelling method, which enhances design flexibility in
terms of dimensionality and surpasses the limitations of traditional
two-dimensional structures. (3) We have validated our findings in
experiments that demonstrated the superior optical and radiative
cooling performance of our TMEs compared to current state-of-the-art
designs. This research may facilitate the straightforward identification
of promising meta-emitters that have the potential for manufacturing
scalability and practical applicability from diverse candidates.

Overview of theinverse design paradigm

Our design approach diverges significantly from conventional empiri-
calengineering methods (Supplementary Fig.2). We concentrated on
constructing an expansive, parameterized design space. By combin-
ing a powerful geometric/material descriptor with ML algorithms,
our approach completes an exhaustive exploration across the design
space, thus enabling effective inverse nanophotonic engineering.
Three critical aspects of our framework merit consideration: (1) the
comprehensive database features 3D structural primitives and spatial
arrangement combinations (Fig. 1a, left); (2) selecting suitable materials
(Fig.1a, right) involves considering several factors, including the elec-
tronic bandgap, refractive index, and chemical and thermal stability;
(3) aunified descriptor system translates complex 3D structural and
material data into computational parameters, thereby maximizing
design flexibility. Collectively, these elements expand the search range
ofthealgorithmand enable the exploration of previously inaccessible
parts of the design space.

The proposed design conceptis general, and it leverages avastlibrary
of 3D photonic structures and diverse material systems. Numerous
functionalities and flexible spectral tailorability can be achieved
through various geometric/material combinations (Fig. 1c). Our plat-
formstands out from previous ML-based approaches duetoits unique
advantages. It has flexible and ultrabroadband multispectral tailor-
ability fromthe ultraviolet to the mid-infrared (0.25-25 pm), as shown
inFig.1d. It can automatically combine and tailor several 3D photonic
structures and materials to produce the desired spectral characteris-
tics, thus fulfilling concurrent multi-objective design requirements
(Fig.1e).

ML-based inverse design process and descriptors

A critical step wasto develop effective, parameterized descriptors for
both geometric and material properties. We compiled acomprehensive
‘library’ of structural primitives inspired by natural prototypes® *—
including spheres, cylinders, ridges and triangular prisms—along with
their spatial arrangements (Supplementary Fig. 3 and Supplementary
Table1). These designs have evolved inbiological systems, which exhibit
diverse 3D hierarchical micro- and nanoscale structures with excep-
tional optical and thermal properties. Using our library, which com-
prises 32 basic 3D primitives (Fig.2aand Supplementary Fig. 4), various
spatial arrangements (Fig. 2b) and 30 candidate materials (Fig. 2d), our
ML algorithm can generate tens of thousands of meta-emitter designs.

Weinitiated our ML process by defining alarge design space with geo-
metricand material information. We developed an efficient geometric/
material descriptor capable of representing complex 3D hierarchical
structures. Specifically, athree-plane modelling method was created
to describe structural primitives (Fig. 2c). Each primitive is divided
into three segments: a central plane (first plane), an upper plane (sec-
ond plane) and alower plane (third plane). Simple structures, such as
hemispherical or cylindrical shapes, require only two planes, whereas
more complex two-part structures necessitate all three planes, such
as spherical, spherical-top cylinder and so on. Key parameters—such
as size and shape—define the geometry of each plane, thus captur-
ing the spherical, cylindrical or polygonal features as well as dimen-
sions and edge length. Parameters for connection, distance, rotation
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and shelling (core-shell) further characterize the interrelationships
between planes and the placement status of primitives. This three-plane
method reduces each complicated 3D primitive to 11 essential vari-
ables, which enables the efficient mathematical encoding of typical 3D
structural primitives (Supplementary Figs.5and 6). Additionally, spa-
tial arrangements, including ordered, random and gradient (Fig. 2b),
are described with displacement vectors (Supplementary Note 1 and
Supplementary Fig. 7), yielding 37 parameters that fully encapsulate
the 3D geometric information.

Subsequently, we selected materials based on their dielectric
properties and developed a material descriptor for the ML process
(Fig. 2d and Supplementary Note 2). To maximize solar reflectivity in
the ultraviolet-visible-near-infrared range (0.25-2.5 um), we evalu-
ated 30 candidate materials with large electronic bandgaps and a high
average refractive index (n) (Supplementary Fig. 8). For the infrared
emissivity, we prioritized polymers and inorganic materials exhibiting
phonon-polarization resonances to ensure absorption across the infra-
red band (3-25 pm) (Supplementary Table 2). The optical properties of
each material were defined by its complex refractive index (72 = n + ki)
(Supplementary Fig. 9). By integrating the material and geometric
information about the structural primitives, we formulated a com-
bined design descriptor (Fig. 2e and Supplementary Table 3), which
capturesthe complex design space and enables global inverse design.
Thiscombined descriptoris theinput tothe prediction process of our
ML framework. The outcomes are the solar reflectivity and infrared
emissivity spectra (Supplementary Note 3).

Training the algorithm platform

The ML-based design framework has four main steps (Fig. 2f): (1) estab-
lishing a database; (2) developing the forward prediction networks;
(3)implementing aninverse design framework using a conditional gen-
erative adversarial network (Supplementary Note 4 and Supplementary
Fig.10); and (4) validating it through simulations and experiments. We
constructed a comprehensive dataset of 57,110 randomly generated
meta-emitters with details of structural primitives, spatial arrange-
ments, constituent materials and spectral responses (Supplementary
Fig.11). To enhance data quality, we employed the Kennard-Stone
algorithm to select a representative, uniformly distributed subset of
32,207 samples, allocating 70% for training and 30% for testing. This
preprocessing minimized the overfitting risk by ensuring we used a
diverse sample distribution, which bolstered the generalizability and
predictive accuracy of the model** (Supplementary Fig.12).

Because of the dimensional mismatchbetween geometric and mate-
rial information, using raw design vectors could hinder training. To
solve this, we applied autoencoders for dimensional reduction of both
design and response vectors before inputting them into a fully con-
nected neural network for forward prediction (Supplementary Table 4),
whichimproved the accuracy over raw data (Supplementary Fig. 12).
However, challengesin achieving an accurate inverse design arose from
the different convergence rates of the discriminator and generator in
the conditional generative adversarial network. To address this, we
pretrained the generator, introduced 10% dataset perturbations and
applied a weighted loss function to synchronize the training speeds
(Supplementary Note 5 and Supplementary Fig.13).

Inverse multi-objective design of TMEs

To verify the design capabilities of our framework, we developed
seven distinct TMEs tailored to specific applications (Supplementary
Fig.14): (1) TME-1is a broadband meta-emitter has high emissivity
across infrared wavelengths (3-25 um) for above-ambient radiative
cooling or extraterrestrial applications®*; (2) TME-2is aband-selective
meta-emitter with peak emissivity in the first atmospheric window
(8-13 um) for terrestrial subambient radiative cooling?; (3) TME-3 is
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a dual-band-selective meta-emitter with high emissivity across two
atmospheric windows (8-13 and 16-25 pm)"; (4) TME-4 is a ther-
mal camouflage meta-emitter with low emissivity within ranges 3-5
and 8-13 pm and high emissivity outside the atmospheric window
(5-8 um)™; (5) TME-5 is a two-sided Janus meta-emitter for daytime
subambient cooling with a broadband high-emissivity side and for
night-time supra-ambient warming with the low-emissivity side;
(6) TME-6 and TME-7 are meta-emitters with customized spectra.
Leveraging the processing capabilities of our trained conditional gen-
erative adversarial network could provide appropriate meta-emitter
candidates for any requested spectrum and predict their performance
metrics.

For each TME, we generated 2,000 models, screened to a 0.15
threshold (Supplementary Note 6), resulting in 545, 270, 121,197,
146,171and 91 qualified designs, respectively, all meeting the spectral
targets (Supplementary Figs. 16-18). We further validated 21 repre-
sentative designs using finite-difference time-domain simulations
(Fig.3aand Supplementary Fig.19). Notably, our methodology yielded

|—>| Forward prediction l—-| On-demand inverse design |—>| Validation and experiments

primitive.d, Materials screening considers the bandgap, refractiveindex and
phonon-polarizationresonance. The MLinputs are therefractive indices (n)

and extinction coefficients (k). Ny Ksoars iz aNd kg denote the nand k values
inthesolarandinfrared bands, respectively. e, The design spaceis defined by
combined geometric/material descriptors, yielding a training dataset of 57,110
samplesand coveringall features of the two primitive sets, substrate, reflector
andtop layers. Note that the latter two components are optional. f, The four main
stepsinthe ML design framework.

avariety of hierarchical metastructures, including both conventional
configurations (for example, photonic crystals and multilayered
stacks) and previously unidentified designs that go beyond tradi-
tional empirical intuition (Fig. 3b and Supplementary Figs. 20-26).
Furthermore, the framework can generate 2,500 candidates per sec-
ond, vastly outpacing conventional optimization techniques (Sup-
plementary Fig. 27).

We further analysed material and structural utility across wave-
lengths, which revealed clusters based on ML-identified physical laws
(Fig.3c). Although this analysis does not exhaust all potential possibili-
ties, itillustrates that our framework can extract physical principles
from complex datasets in the design of meta-emitters. This clustering
aids in targeting subcategories of materials and structures without
compromising optical responses, thus empowering viable designs
tailored to specific spectral and stability requirements. For instance, for
TME-1-TME-3, solutions can be visualized by auxiliary lines on the data
graph, which streamlines the material and structural selection. Further-
more, using our automated selection algorithm and a relatively large
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Fig.3|Inverse design of different TMEs. a,b, Spectra (a) and schematic
diagrams (b) of three different designs for each TME task. For TME-5, high

(low) emissivity correspondsto cooling (heat-retaining) mode (Supplementary
Fig.15). c, Relationships among materials, structural primitives and response
wavelengths from an analysis of our results. The number of randominput
spectrawas24,000. Points represent high reflectivity (0.25-2.5 pm) and high
emissivity (3-25 pm). The typical TME-1-TME-3 designs conform well to the

pool of materials, we can efficiently identify high-temperature-tolerant
meta-emitters that simultaneously meet stringent thermal stability
requirements and desired optical performance criteria (Fig. 3d and
Supplementary Table 5).

Experiments and performance assessment

To validate our designs, we synthesized four representative meta-
emitter designs (TME-1to TME-4) for experimental demonstration
(Fig.4a-cand Supplementary Figs. 28-32). Notably, the measured spec-
tra closely matched the predicted responses from our ML framework
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/?eﬂecﬁw ity

patternshowninthe diagram (blue, green and brown lines). The dashed
linesindicate omitted spectralregions. d, Several typical generated meta-
emitters with potential high-temperature tolerance capabilities and high
optical properties. The bluerectangleis the isothermal surface at 600 °C.
AW, atmospheric window; PAA, poly(acrylicacid); PMAA, poly(methacrylic
acid); PMMA, poly(methyl methacrylate); PU, polyurethane; PMP,
poly(methyl pentene).

(Fig.4d), confirming the precision and effectiveness of our algorithms.
Forinstance, TME-1, abroadband meta-emitter, with detailed features
in Fig. 3b (TME-1.3) and Fig. 4a, achieved a solar reflectance of over
0.96in 0.25-2.5 pmand abroadband infrared emissivity of 0.92 across
3-25 um (Fig. 4d, with underlying mechanisms in Supplementary
Figs. 33 and 34). TME-2, aband-selective meta-emitter, has a bilayer
structure (TME-2.1) (Figs. 3b and 4b). The porous Al,0; enhances the
absorptivity within the first atmospheric window through cavity reso-
nances (Supplementary Fig. 35) while reflecting other wavelengths.
Our experimental measurements confirmed a near-ideal hat-shaped
emissivity spectrum (Fig. 4d), with a high solar reflectivity of 0.96 and
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an average emissivity of 0.92 across the first atmospheric window.
TME-3, a dual-band-selective meta-emitter, with detailed features in
Fig.3b (TME-3.1) and Fig. 4c, displayed exceptional optical properties,
including emissivity reaching up to 0.95in the firstatmospheric window
(8-13 um) and 0.90 in the second atmospheric window (16-25 pm),
while maintaining ahigh reflectance in the remaining mid-infrared and
solar bands. The high dual-band-selective emissivity is attributed to
the absorption bands of CO,* (875-1,425 cm™) and C-F bonds (400-
540 cm™)in polytetrafluoroethylene (PTFE) (Supplementary Table 2).
Thesolar reflectivity was enhanced by Mie scattering of CaCO, spheres
and the micro- and nanopores within the PTFE substrate.

To quantitatively assess the multispectral wavelength tailorability,
weintroduced two metrics: the nominal broadband emissivity 7, which
isameasure of the broadband-emissive characteristics of TME-1, and
the selective ratio y, whichis ameasure of the band selectivity of TME-2
(Methods)’. Notably, our ML-based approach efficiently generates
agreat quantity of TME designs with excellent optical performance
that surpasses their state-of-the-art material counterparts in terms of
solar reflectivity, emissivity and wavelength tailorability, as compared
inFig. 4e,f and Supplementary Fig. 36. Notably, TME-1 demonstrated
near-unity nominal broadband emissivity, affirming the ultrabroad-
band optimization capabilities of our approach compared with meth-
ods in other works>®203%45°48 (Fig, 4e and Supplementary Table 6).
Moreover, TME-2 achieved a selective ratio of up to 5.52, which is 2
times higher than typical values reported so far>*”?4%5° (Fig. 4f and
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after the TME-3 coating has been applied on theroof. e, Our projected global
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Supplementary Table 6). These results underscore the ability of the
ML approach to meet stringent spectrum engineering requirements
for ultrabroadband, mono-selective or dual-selective applications.
We experimentally evaluated the terrestrial radiative cooling per-
formance of TME-1,2 and 3 under various application scenarios, focus-
ing on weather conditions including ambient temperature, relative
humidity and ground temperature. In outdoor measurements, all three
meta-emitters maintained subambient temperatures (Fig. 4g), but their
distinct emission spectraled to different cooling behaviours. Under
clear skies, TME-1achieved asignificant temperature drop of 5.9 °C at
midday duetoreduced atmospheric water vapour, whichreduced the
heat load from counter radiation outside the atmospheric windows.
However, cloudy conditionsincreased the absorption of counter radia-
tion, which reduced the efficiency of TME-1 (Supplementary Fig. 37),
whereas TME-2, with its band-selective emission, achieved a 4.6 °C
subambient drop. In urban scenarios (vertically placed facing a wall;
Fig. 4h and Supplementary Fig. 38), TME-2 achieved superior perfor-
mance, maintaining temperatures 2.5and 5.3 °Clower than TME-1and
commercial white paint, respectively (Fig. 4h). This is attributed to
its ability to emit heat while selectively blocking unwanted thermal
radiation from the surroundings (maximum of approximately 70 °C).
We conducted anin-depth analysis of the cooling power under vari-
ousscenarios: clear days, cloudy days and urban environments (Fig. 4i
and Supplementary Note 7). Under clear daytime conditions, TME-1and
TME-3 exhibited higher cooling powers of approximately 120 W m2,so



that they efficiently dissipated heat into space with minimal interfer-
ence from water vapour and clouds. By contrast, under cloudy condi-
tions, the transmittance of the atmospheric windows was significantly
reduced due to increased water vapour concentration, resulting in a
substantial decline in the net cooling power (Supplementary Fig. 39).
In urban environments, TME-2 outperformed both TME-1and TME-3
with an obviously lower heat gain because of its spectral selectivity.

For extraterrestrial applications, TME-1 proved particularly well
suited for deploymentinsuch extreme environments, due toits ability
to reflect nearly all solar irradiation while maximizing infrared emis-
sion?*. Moreover, it has considerable operational stability (Supplemen-
tary Fig. 40). Details of this theoretical CubeSat study are provided in
Supplementary Note 8 and Supplementary Fig. 41.

Applicability and energy-saving evaluation

Drawing from thousands of generated models, we can easily identify
meta-emitters that meet manufacturability criteria for large-scale
production (Supplementary Tables 7-12). For instance, TME-3 can be
applied easily, just like using paint (Supplementary Fig. 42), and its
room-temperature and solution-based fabrication canbe used to coat
various surfaces like bricks, metals, plastics and glass (Supplementary
Fig.43). To evaluate its practical cooling effect, we constructed three
identical model houses (Fig. 5a,b). Real-world thermal profiling during
peaksolarirradiance (4-hour midday monitoring period) demonstrated
that the TME-3-coated roof surface maintained temperatures 5.6 °C
below conventional white paint and 21 °C under standard grey-coated
benchmarks (Fig. 5¢). This highlights its practical potential for urban
heat mitigation and, thereby, improving habitability in a hot climate.
To evaluate the potential reduction in electricity and CO, emissions
on alarger scale, we simulated the energy consumption of a typical
four-storey midrise apartment building with a TME-3-coated roof
(Supplementary Fig. 44). Considering the energy used by heating,
ventilation and air-conditioning systems, the application of TME-3 as
anexternal envelope material demonstrated impressive energy-saving
performance in the selected cities, particularly in tropical regions
(Fig. 5d and Supplementary Figs. 45-47). In extreme hot climates, the
annual energy savings for indoor air-conditioning could reach up to
75 M) m~, equivalent to 57.2 GJ (approximately 15,800 kWh) per year
(Fig. 5e). Furthermore, the versatile applications for TME-3 include sun-
shades, textiles and coloured wearables (Supplementary Figs. 48-50).

Conclusions

We have developed a general design platform integrating machine
intelligence, computational simulation and experimental validation
to autonomously discover and optimize a diverse family of TMEs.
This framework not only achieves an exponential expansion of the
thermal metamaterial design space but also enables fundamental
advances in nanoscale light-matter interactions. Through precise
spectral engineering, we have developed materials ready for scalable
deployment across diverse infrastructure applications. Our general-
ized ML-driven framework, which has enlarged the design space for
global TME designs, is key to the next paradigm shiftininverse design.
When more structural primitives, spatial arrangements and materials
features are included, this workflow will probably be applicableto a
wide range of nanophotonic materials, with capabilities extending to
coloured meta-emitters (Supplementary Fig. 51), meta-optics, topo-
logical photonics and beyond.
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Methods

Fabrication of TMEs

TME-1was prepared using atemplate method (Supplementary Fig. 29).
The fabrication began with cleaning a silicon wafer using a150-W oxy-
genplasmafor300 s, followed by spin-coating a1.2-pm-thick positive
photoresist at 2,500 rpm for 60 s and hard-baking at 100 °C for 90 s.
The wafer was then aligned with a photomask, exposed to ultraviolet
light for 15 s using a proximity lithography system (SUSS MA8/BAS),
developed in a tetramethyl ammonium hydroxide solution for 45 s
and rinsed. Reactive ion etching with sulfur hexafluoride (SF,) was
employed to form a hemispherical pore structure and complete the
silicon mould. To facilitate demoulding, the mould was treated with
1H,1H,2H,2H-perfluorodecyltriethoxysilane (Macklin H817036) for
30 min. A degassed polydimethylsiloxane (PDMS) solution (Supelco
57928-U), prepared witha curing agentina1:12 (v/v) ratio, was poured
onto the silicon mould and cured at 60 °C for 3 h, yielding the PDMS
template. Polyvinyl chloride (PVC, K value 62-60) particles (16 wt%)
were then dispersedinto a45 °CN,N-dimethylformamide (DMF) solu-
tion under continuous stirring, cast onto the PDMS template and left
to solidify in air such that air-induced phase separation resulted in a
porous structure. Finally, the structured PVC composite was briefly
immersedina 5% aqueous DMF solution containingsilica (SiO,) micro-
particles (1 pmin diameter) floating on the liquid surface and left for
10-15stoallowslight dissolution of the surface microstructure, lead-
ing to the spontaneous firm adsorption of SiO, onto the PVC surface,
thereby forming the final TME-1sample. Owing to the high accessibil-
ity of PDMS templates, splicing technology can be used to fabricate
large TME-1 films.

The free-standing band-selective TME-2 was fabricated using
two-step anodization (Supplementary Fig. 30). High-purity alumin-
ium foil (Al, 99.999%, Macklin, thickness of 0.5 mm) was first cleaned
sequentially in acetone, ethanol and deionized water, followed by
electrochemical polishing in a perchloric acid (HCIO,) and ethanol
solution (1:4 v/v) at20 V for 5 min to ensure asmooth surface. The first
anodization was conductedina 0.3 M oxalic acid solutionat 2 °Cunder
ad.c. voltage of 125V for 8 h, forming a disordered porous alumina
(Al,0,) layer, whichwas subsequently removed by chemical etching in
asolution containing 6 wt% phosphoricacid (H,PO,) and 1.8 wt% HCIO,
at 60 °C for 50 min. A second anodization was then performed under
identical conditions for 6 h, yielding a well-ordered porous alumina
(AL, O;) structure withaninitial pore diameter of approximately 240 nm.
To achieve the target pore size, the sample underwent pore widening
in5wt% H;PO, at 30 °C for 60 min, resulting in a final structure with
uniform hexagonally arranged pores of larger diameter, thus forming
the desired band-selective TME-2.

The TME-3 filmwas also prepared by an air-induced phase separation
method (Supplementary Fig. 31). First, low-density polyvinylidene
fluoride (PVDF) was dissolved in DMF at 45 °C under stirring to forma
homogeneous dilute solution with a concentration of 3 g per 100 ml.
The PVDF functioned asabinder. To preserve the band selectivity, the
concentration of PVDF had to be maintained ataminimum level. After
standing for 3 h, calcium carbonate (CaCO,) microparticles (diameter
of approximately 2 um) and PTFE nano-powders (diameter of less than
30 nm)wereadded tothesolutioninratios of10.1gper100 mland4.5g
per100 ml, respectively, followed by stirring at 45 °C to ensure uniform
dispersion. The slurry-like TME-3 precursor solution can be deposited
with several different coating methods (spin, spray or brush coating),
dependingonviscosity, to facilitate the formation of a film on various
substrates such as metal, glass or brick. To mitigate shrinkage, the film
was coated in a cool environment at 20 °C and allowed to dry under
ambient conditions for 24 h. During this process, phase separation
occurred, resulting in the formation of a porous structure. Notably,
CaCO; microparticles exhibited spontaneous surface aggregation,
whereas the PTFE was uniformly and densely distributed as the primary

component within the porous matrix. A TME-3 film was obtained on
completion of drying.

The TME-4 film was fabricated using a lift-off process (Supplemen-
tary Fig. 32).First,aphosphorus-dopedsilicon (100) wafer was cleaned
with oxygen plasmato remove organic contaminants. A100-nm-thick
aluminium layer and a 720-nm-thick silicon layer were sequentially
deposited onto the substrate by electron beam evaporation. Next,
alayer of positive photoresist was spin-coated onto the sample and
soft-baked. Ultraviolet lithography was performed using a quartz mask,
followed by immersion in a wet developer to define the desired pat-
tern. The developed sample was then hard-baked at 100 °C to enhance
stability. Afterward, 75 nm of aluminium was deposited by thermal
evaporation. Thelift-off process was carried out by placing the sample
inanacetone solution within a45 °Cwater bath for 20 min to dissolve
the photoresist and remove excess aluminium. Finally, ultrasonic treat-
mentensured the complete removal of residual contaminants to yield
awell-defined TME-4 film structure.

Simulation of optical properties

Full-wave simulations conducted by FDTD Solutions (Lumerical Co.,
Ltd) were used to calculate the reflectivity of the solar band (0.25-
2.5 um) and the absorptivity and emissivity within the infrared band
(3-25 um). The microstructural details were abstracted from biologi-
cal prototypes (Supplementary Table 1) and recreated by three-plane
geometric descriptors in MATLAB R2022b. The 3D structural units
were assumed to be periodically arranged. Realistic optical properties
(complex refractive indices) of common materials, obtained from meas-
urements and open-access refractive index databases, were assigned
to the basic geometries. The reflectivity and transmissivity were cal-
culated by averaging the results for transverse-electric-polarized and
transverse-magnetic-polarized light to account for the unpolarized
incident light in experiments.

Optical and morphological characterizations

The solar reflectivity was measured for the wavelength range 250-
2,500 nmwithanultraviolet-visible-near-infrared spectrophotometer
(PerkinElmer, Lambda 950). The infrared reflectivity R and transmissiv-
ity Twere measured using a Fourier-transforminfrared spectrometer
(Thermal Scientific, NicoletiS50) operated in the range 3-25 pum with
agoldintegrating sphere (Peak Technologies). The absorptivity A was
determinedasA =1- R - T.Opticalimages were taken using Nikon D610
(visible) and FLIR T630 (infrared) cameras. Scanning electron micros-
copy was done using TESCAN MIRA 3 scanning electron microscope
and Zeiss Gemini 300 scanning electron microscope.

Nominal broadband emissivity and selective ratio

The nominal broadband emissivity n was calculated as the product
of the bandwidth coefficient (actual bandwidth divided by the ideal
bandwidth of 3-25 pm) and the average emissivity within the high-
emissivity band:
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inwhiche(A) is the emissivity at wavelength A, and A, and A, are the start
and end wavelengths of the design band, respectively. The selective
ratio y was defined as the ratio of the average emissivity of the first
atmospheric window’ to the emissivity of the range outside the first
atmospheric window (3-8 and 13-25 um):
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Outdoor and urban thermal measurements

The set-up for outdoor thermal measurement isshownin Supplemen-
tary Figs. 37 and 38. To measure the radiative cooling performance
when facing towards sky, TME and control samples of 8 cm x 8 cmwere
cut and put into a box made of thermal insulating polystyrene foam
(100 cm x 70 cm x 80 cm). For each sample, separate chambers were
formed using polystyrene. The entire foam (except for the sample
area) was covered by aluminium foil. A solar power radiation meter
(TES-1333R) was used to record the local solar radiation. The relative
humidity and ambient temperature were measured using a weather
meter (Kestrel 5500). The real-time temperature was measured with
multichannel dataloggers with K/T-type thermocouples. For urban
heat-island thermal measurements, samples of size 6 cm x 6 cm were
cutand putinto the centre near one side of separate, dedicated thermal
insulating polystyrene boxes (20 cm x 30 cm x 15 cm). These thermally
insulated boxes were placed near a wall at the bottom of a 45° slope.
The apparatus was placed on a light-coloured trestle with a height of
80 cmto prevent conduction from the ground, whichwas at 70 °C. To
measure the practical application performance of the designed TME,
we applied TME-3 onto the model roofs, clothing surfaces and helmet
surfaces, and performed thermal measurementsin urban areas, specifi-
cally in parks and building complexes.

Simulation of extraterrestrial cooling performance

To explore the radiative cooling performance of broadband TME-1
in outer space, we used COMSOL Multiphysics to simulate the tem-
perature behaviour of a polar-orbiting satellite operating in low Earth
orbit (Supplementary Fig. 41). The satellite model was simplified as a
hollow cube with asidelength of 50 cm. The outer surface material was
set to TME-1 (excluding the antenna), and the frame material was an
aluminium alloy. There were two constant-power heat sources inside.
The thermal radiation exchange objects of the satellite were the Earth
(atmosphericlongwave radiation, 3-40 pm), the Sun (solarirradiance
was assumed to be under air mass zero) and the Universe (cold source of
4 K). Theinternal heat conduction of the satellite was automatically set
by the software. We calculated the temperature changes at the highest
temperature point of the simulation model under different thermal
loads (240 and 450 W) and different surface settings. We also explored
the stability of TME-1during service in low Earth orbit, as detailed in
Supplementary Fig. 40.
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