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Predicting Mechanical and Thermal Properties of
High-Entropy Ceramics via Transferable
Machine-Learning-Potential-Based Molecular Dynamics

Yiwen Liu, Hong Meng, Zijie Zhu, Hulei Yu,* Lei Zhuang, and Yanhui Chu*

The mechanical and thermal performance of high-entropy ceramics are critical
to their use in extreme conditions. However, the vast composition space

of high-entropy ceramics significantly hinders their development with desired
mechanical and thermal properties. Herein, taking high-entropy carbides
(HECs) as the model, the efficiency and effectiveness of predicting mechanical
and thermal properties via transferable machine-learning-potential-based
molecular dynamics (MD) have been demonstrated. Specifically, a transferable
neuroevolution potential (NEP) with broad compositional applicability for
HECs of ten transition metal elements from group 111B-VIB is efficiently con-
structed from the small dataset comprising unary and binary carbides with an
equal amount of ergodic chemical compositions. Based on this well-established
transferable NEP, MD predictions on mechanical and thermal properties of
different HECs have shown good agreement with the results of first-principles
calculations and experimental measurements, validating the accuracy,
transferability, and reliability of using the transferable machine-learning-
potential-based MD simulations in investigating mechanical and thermal
performance of HECs. This work provides a strategy to accelerate the search
for high-entropy ceramics with desirable mechanical and thermal properties.

1. Introduction

High-entropy ceramics, a class of emergent multicomponent ma-
terials with four or more principal elements, have attracted sub-
stantial attention in the ceramic community since they were
first proposed in 2015.['**) Owing to their compositional com-
plexity and unique microstructures, high-entropy ceramics have
been shown to possess a range of superior properties exceed-
ing those of their individual component ceramics, such as better
thermal stability,!>>¢] enhanced mechanical properties,’>*7] ex-
ceptional oxidation and ablation resistance,®? higher catalytic
activity,['**l improved thermoelectricity,!'>!¢) and remarkable su-
perionic conductivity.['”! These distinctive characteristics have
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made them great potential for various struc-
tural applications, such as hypersonic ther-
mal protection systems and high-speed cut-
ting tools, as well as functional applica-
tions, like catalysts, thermoelectrics, and
electrodes.

The investigations of mechanical and
thermal properties are essential for high-
entropy ceramics’ use as structural mate-
rials, especially in extreme circumstances.
To date, various exceptional mechanical
and thermal properties, like high hard-
ness and modulus,>*3 enhanced flexural
strength,['#19] improved high-temperature
creep resistance,[?! and lowered thermal
conductivity and coefficients of thermal ex-
pansion (CTEs),>®?!l have been reported
in high-entropy ceramics. Nevertheless, re-
search on mechanical and thermal prop-
erties of high-entropy ceramics is still
in the early stages. Due to the large
composition space, the traditional experi-
mental approaches to searching for high-
entropy ceramics with desirable mechanical
and thermal characteristics are both time
-consuming and costly, failing to meet the growing demand
from future structural application domains. Hence, it is im-
perative to develop an efficient method to comprehensively
predict the mechanical and thermal properties of high-entropy
ceramics. To this end, molecular dynamics (MD) simulations
based on machine learning potentials (MLPs), as a frontier
data-driven approach, have emerged as an effective and pow-
erful solution.?22% Although studies of MLPs in predicting
material properties have been carried out in high-entropy alloys
(HEAs) and ceramic systems,!?>?/ like TiO,,1?®] Ti,Os,!%] and
TiB,,?" the applications of MLPs in high-entropy ceramics
are seldom reported, with only two attempts proposed by Dai
et al. on constructing MLPs for (Ti;sZr,sHf; sNb,;sTa;5)B,
and  (Zr,sHf, sTi; sNb; 5T, 5)C.P*2 The dominant con-
straint lies in the poor transferability of the trained MLP
with the conventional construction strategy, where the MLP
was trained from a fixed-composition dataset, greatly hin-
dering the comprehensive predictions of mechanical and
thermal properties in different materials. Recent studies have
demonstrated improved transferability in MLPs trained with
varied compositions in HEAs, promoting machine-learning-
potential-based MD simulations on their plasticity and primary
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Figure 1. Schematic of transferable machine-learning-potential-based MD simulations for HECs. a) Crystal structure and the polyhedral of TM carbides
with ten TM elements. TM and carbon atoms are colored in pink and black, respectively. b) Strategy to construct NEP for HECs. c) Transferable machine-
learning-potential-based MD simulations on mechanical and thermal properties of HECs.

radiation damage performance.®®) However, there is still a
lack of transferable MLPs with broad compositional applica-
bility to enable the effective and economical exploitation of
high-entropy ceramics with desired mechanical and thermal
properties.

High-entropy carbides (HECs) are promising ultrahigh-
temperature ceramics due to their potential tailorable and re-
markable mechanical and thermal performance.347#l In this
work, taking the HEC system as an example, we systematically
explore mechanical and thermal properties of HECs through
transferable machine-learning-potential-based MD simulations.
To be specific, a transferable neuroevolution potential (NEP) with
high accuracy and transferability based on unary (1HEC; the car-
bides with n types of transition metal (TM) elements are no-
tated as nHECs) and binary (2HEC) carbide training data with
up to ten non-magnetic TM elements of group IIIB, IVB, VB,
and VIB (see Figure 1a) is efficiently built, enabling accurate
and transferable machine-learning-potential-based MD simula-
tions on mechanical and thermal properties of HECs. Figure 1b
displays the process of the NEP construction strategy for HECs,
where various effects, including the computational cost and mod-
eling complexity of density functional theory (DFT) computa-
tions as well as accuracy and transferability of NEPs trained
from different datasets, on the construction of NEPs are dis-
cussed, and a combination of 1HEC and 2HEC (1+2HEC) con-
figurations with an equal amount of all possible chemical com-
positions is identified as the optimal training dataset choice.
The transferability and accuracy of the established NEP are then
assessed and verified by considering its applicability to HECs.
Moreover, the accuracy, transferability, and reliability of MD sim-
ulations with the trained NEP on predicting mechanical and ther-
mal properties of HECs are validated by comparing the results
of first-principles calculations and experimental measurements
(see Figure 1c). Our results show that the transferable machine-
learning-potential-based MD simulations can efficiently acceler-
ate the discovery of HECs with desired mechanical and thermal
properties.
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2. Results and Discussion

The construction of transferable MLPs for HECs is the prereq-
uisite to enable transferable machine-learning-potential-based
MD simulations. Unlike HEAs, where the metal principal ele-
ments are closely packed together, the metal elements in high-
entropy ceramics are always separated by non-metal elements.
As can be seen from Figure 1a, the first-nearest-neighbor atoms
of TM atoms in carbides are all carbon atoms, forming an octahe-
dron with TM—C bonding. When it comes to HEC systems (see
Figure 2a), such a simple atomic environment can also be perpet-
uated. Though there exists tiny local lattice distortion in specific
atomic pair distance, the overall radial pair distribution function
presented in Figure 2D still confirms the similarity of the atomic
environment for both TM carbides and HECs, which is benefi-
cial to the construction of MLP descriptors for different HECs.[2*]
This indicates the possible applicability of MLPs between train-
ing datasets of carbides and their solid solutions. Based on these
findings, itis anticipated that transferable MLPs applicable to var-
ious nHECs can be efficiently yielded from the training datasets
comprising configurations of limited types of nHECs.

To verify this hypothesis, the cost of building datasets and the
performance of trained NEPs from different datasets were first
investigated. In HECs, the number of TM elements has a signif-
icant influence on geometric modeling, resulting in different ef-
ficiencies in DFT calculations for each composition. As shown
in Figure 2c, it is found that the elapsed times show an over-
all increasing trend from 1HECs to 10HECs, indicating an un-
favorable efficiency in building training datasets with more TM
elements in HECs. Such computational inefficiency can also be
explained by the relatively lower symmetry in HECs with more
TM elements. As 1-3HEC configurations have the highest com-
putational speeds, NEPs were first trained based on small-scale
training datasets of 1HEC, 2HEC, and 3HEC, respectively, and
their performances are presented in Figures S1-S3 (Supporting
Information) and Figure 2d. While the trained NEPs all pos-
sess high training accuracy with comparable root mean square
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Figure 2. Construction and performance of NEP for HECs. a) Local crystal structure and polyhedral of HECs. Black atoms represent the carbon element,
and other colored atoms represent different TM elements. b) Radial pair distribution function of TM carbides and HECs with the same lattice constants.
c) Average elapsed time of NHECs in DFT calculations. d) Performance of NEPs with different training datasets (small-scale) to 1-10HEC testing datasets.
e) Performance of NEPs with different 1+2HEC training datasets to 1-10HEC testing datasets. f) Evolution of various loss functions with respect to
generations for the constructed NEP from the 1+2HEC training dataset (large-scale). g) Energy, h) force, and i) virial from NEP and DFT calculations
for the 14+2HEC training dataset (large-scale) and the 3-10HEC testing dataset.

errors (RMSE) in energy (3.7-4.3 meV atom™!), force (245-273
meV A1), and virial (28.2-34.6 meV atom™'), their transferabil-
ity to the 1-10HEC testing dataset is quite different. Among the
three trained NEPs, the one trained from the 1HEC training
dataset performed the worst, showing low transferability in 1-
10HEC systems. In contrast, the NEP from the 2HEC training
dataset has better testing accuracy with significantly lower RM-
SEs of energy (65.6 meV atom™') and force (278 meV A~'), which
indicates the enhanced transferability for nHEC systems and ver-
ifies our hypothesis. Furthermore, it is notable from Figure 2e
and Figure S4-S7 (Supporting Information) that NEPs trained
from the mixed 1+2HEC training datasets demonstrate better
accuracy and transferability than NEPs from 1HEC and 2HEC
training datasets, possessing much lower RMSEs of energy with
a reduction of up to 65.7% besides the comparable RMSE of
force. The best ratio of 1HEC: (IHEC+2HEC) is identified to
be 18.18%, where equal numbers for all chemical compositions
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of 1HECs and 2HECs were used in training. In addition, ten
TM elements can yield a total of 1023 equimolar compositions
in 1-10HECs. For the 1+2HEC dataset, merely ten kinds of
1HECs and 45 kinds of 2HECs need to be taken into consid-
eration, significantly simplifying the modeling processes for ab
initio molecular dynamics (AIMD) calculations. Therefore, the
1+2HEC dataset with an equal amount of all possible chemi-
cal compositions is determined to be the most efficient training
dataset.

The accuracy of the trained NEP can be further improved by
increasing the volume of the training dataset.[>*] Here, a larger
14+2HEC training dataset, configurations increasing from 1000
to 5500, was built to construct the NEP with high accuracy. As
shown in Figure 2f, the L1 and L2 regularization loss functions
show an increasing-then-decreasing trend over one million gen-
erations, indicating the effectiveness of the regularization. The
loss of energy, force, and virial also converged, suggesting the
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Figure 3. Comparison of structural and elastic properties of 4—8 HECs between machine-learning-potential-based MD simulations and DFT calculations.
a) Lattice constants. Experimental data are from Ref.[634-37] Elastic tensors b) Cy3, ) Cqp, d) Cy4, €) B, and f) G from NEP calculations with SQS models

at 0 K compared with DFT calculations of SQS models at 0 K. The inserts
potential-based MD simulations at 300 K. g) RMSEs for the above five qu
2300 K.

well-trained NEP. In addition, the increase in the volume of the
1+2HEC training dataset has no significant influence on their
training accuracy (see Figure 2g-i). To examine the transferabil-
ity of the trained NEP, a testing dataset based on 1500 kinds
of 3-10HECs was built. It is notable that the enlarged volume
of the training dataset can greatly improve the testing accuracy,
achieving low testing RMSEs of 15.7 meV, 301 meV A~!, and
49.1 meV atom™! in energy, force, and virial, respectively. Al-
though the accuracy of the trained NEP is promising to be opti-
mized further by introducing more training data (tens of thou-
sands for most previous MLP works),!?832] the present testing
accuracies have already been sufficiently high for physical and
chemical property explorations compared to previously reported
MLPs,[2231-33] demonstrating the remarkable efficiency, transfer-
ability, and accuracy of our established NEP for HECs. Moreover,
only a minor fluctuation in testing accuracies can be observed in
individual testing accuracies of nHEC (n = 3-10) testing datasets

show the consideration of size and temperature effects in machine-learning-
antities. h) B of 4-8HECs at 300 K and 2300 K. i) G of 4-8HECs at 300 K and

from Figure S8 (Supporting Information), indicating the trans-
ferability of our trained NEP to different HEC systems.

With the established transferable NEP, machine-learning-
potential-based MD simulations can efficiently predict the me-
chanical and thermal performance of HECs. A total of 200 com-
positions of different 4-8HECs were randomly selected. As dis-
played in Figure 3a, the predicted lattice parameters (a) of 4—
8HECs from machine-learning-potential-based MD simulations
with our transferable NEP at 300 K are well consistent with DFT
results and reported experiments,!®**%"] indicating the reliability
of our trained NEP. From Figure 3b-{, it can be found that the
three elastic constants (Cy;, C;,, and C,,) of HECs and the cor-
responding bulk modulus (B) and shear modulus (G) based on
these constants predicted by machine-learning-potential-based
MD simulations without size and temperature effects (using
the energy-strain approach with the same special quasi-random
structure (SQS) models at 0 K) exhibit remarkable alignment
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to those of DFT computations with the negligible value differ-
ence (see RMSEs in Figure 3g and the adjusted R-square (R’ 4)
in Figure S9, Supporting Information), showing the accuracy of
machine-learning-potential-based MD predictions. On the con-
trary, large discrepancies can be observed between temperature-
dependent MD results (64 000 atoms, 300 K) and DFT calcula-
tions (SQS models, 0 K) in Figure 3b-f, especially for C;;, Cy,,
and G (see large RMSEs in Figure 3g and low R’ 4 in Figure S9,
Supporting Information). Such large disparities demonstrate the
importance of the size effects (more disordered model) and
temperature effects on the evaluations of the elastic properties
of HECs,*®) thereby implying the necessity of using machine-
learning-potential-based MD for HEC property predictions under
temperature. Moreover, the elastic properties of different "tHECs
(n = 4-8) at both high temperature and low temperature were
also explored. As shown in Figure 3h,i, it can be seen that the dif-
ferences in the average B and G are tiny for 4-8HECs, and HECs
with fewer TM elements tend to show larger value ranges at both
low and high temperatures. Furthermore, the increase in tem-
perature is determined to be detrimental to B and G for HECs,
with an obvious overall decrease from 300 K to 2300 K. In addi-
tion, HECs with Scand Y elements (i.e., ScY-based HECs) tend to
have both lower B and G, whereas TaVW-based HECs and TiTa-
based HECs are preferable to achieve higher Band G, respectively
(see Figures S10, S11 and Tables S1, S2, Supporting Informa-
tion). Notably, (Nb, , Ta; ,V;,, W, ,)C is found to possess the max-
imum B simultaneously at low temperature and high tempera-
ture among the predicted 200 HECs, while (Ti ,Ta,;,V;,,W;,,)C
and (Ti; ,Nb, ,Ta, ,Hf; ,)C possess the largest G at 300 K and
2300 K, respectively. As a result, conclusions can be drawn that
the established NEP has high accuracy and transferability in
machine-learning-potential-based MD simulations for HECs.
Besides the structural and elastic properties, the applicability
of machine-learning-potential-based MD simulations with our
established NEP on the tensile strengths of 4HEC was also in-
vestigated. Taking the common 4HEC, (Ta, ,Nb, ,Ti, , Zr, ,)C, as
an example,3®! Figure 4 presents the simulated tensile-testing
results at 300 K. As depicted in Figure 4a—c, the ultimate ten-
sile strengths of (Ta, ,Nb, ,Ti, ,Zr, ,)C from machine-learning-
potential-based MD simulations, which are the global stress max-
imum during the tensile tests,!*"! are approximately 25.15, 37.00,
and 35.41 GPa, for the [100], [110], and [111] directions, respec-
tively, which is in agreement with the ones from AIMD values
(22.97, 38.34, and 34.55 GPa, respectively). Notably, the slight
discrepancies in results at high strains may be attributed to
the underfitting of the datasets without fractured configurations.
Meanwhile, the tensile toughness was also evaluated from the
area underneath stress-strain curves.’) The machine-learning-
potential-based MD results are 1.58, 3.06, and 2.87 GPa for the
[100], [110], and [111] directions, respectively, which are also com-
parable to those of AIMD results (1.43, 3.08, and 2.88 GPa, re-
spectively). In addition, the predicted tensile strength and tough-
ness from nanoscale models vary a lot with large strains, indicat-
ing the great influence of size effects similar to elastic properties.
Moreover, the fracture surfaces formed during different deforma-
tions from AIMD (see Figure 4d—f) are also aligned with the re-
sults of machine-learning-potential-based MD simulations (see
Figure 4g-i for SQS models and Figure S12, Supporting Infor-
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mation for nanoscale models), which are all approximately per-
pendicular to loading directions. It is notable that tensile load-
ing along [100] will yield a void first in the fracture process, and
the [110] tensile loading opens a zigzag fracture surface. Such
exceptional quantitative agreement of stress-strain properties be-
tween machine-learning-potential-based MD and AIMD simula-
tions indicates the reliability of machine-learning-potential-based
MD simulations with our transferable NEP.

To validate the reliability of machine-learning-potential-based
MD simulations with our trained NEP in studying the thermal
properties of HECs, predictions on thermal conductivities of
three typical HECs with different TM numbers at 300 K were
first carried out. It should be noted that the electronic contribu-
tion of the thermal conductivity (k) has a significant influence
on the total thermal conductivity (x,,,) of HECs (see Table S3,
Supporting Information) due to the gapless band structure of
carbides,[* while the one obtained from our machine-learning-
potential-based MD simulations is merely the lattice part (k).
Figure S13 (Supporting Information) shows the running lat-
tice thermal conductivity (x,) as a function of correlation time,
where well-converged averaged «,, can be obtained in the range
between 1.0 ns and 2.0 ns, indicating the reliability of our homo-
geneous nonequilibrium molecular dynamics (HNEMD) simu-
lations. Meanwhile, it is found that there exists a slight decrease
from (Ta, ;,Nb, ,Ti; ;, Z1, 4)C to (Ta; gNb 6 Ti; s Z1; s HE; ;Mo 46)C
and then to (Ta;;Nb, 4 Ti; sZr, gHf, Mo, 5V, s W, )C. Such a
decrease can be understood by the spectral thermal con-
ductivity «,(w) in Figure 5a, where phonon modes in the
range of 0-3 THz contribute the most to «},, with a sig-
nificantly reduced tendency, suggesting a higher anharmonic
scattering rate of low-frequency phonons. Moreover, the sim-
ulated k), are found to be in good agreement with the
experimental measurements (see Figure 5b), demonstrating
the accuracy and applicability of machine-learning-potential-
based MD predictions with our trained NEP in studying the
thermal conductivities of HECs. In addition, the changes
of ki, under temperature were further explored. As dis-
played in Figure 5c, all three HECs possess a decreased
k1, With the increase in temperature, whereas their tendency
((Tay 4 Nb, , iy )y Zr, ,)C > (Tay 6Nby Ti; 6 Zry s HE sMo, )C >
(Ta; ;sNb, ;5 Ti; s Zr; s HE, s Mo, 5V, s W 5)C) remains unchanged
at both low and high temperature. Further studies on the
mass fluctuations and the strain field fluctuations of the
three HECs were conducted to present some clues of de-
creased k). As shown in Table S4 (Supporting Information),
the mass fluctuations are also monotonically decreased from
(Ta; ;4 Nb, , Ti; , Zr, ) C to (Ta, o Nby 6 Ti; 21, g HE, (Mo, 46)C, then
to (Ta; gsNby Ti; 5 Z1, s HE; sMo; 5V, s W, 5)C, which is inconsis-
tent with the previous conclusion of higher mass fluctuations
corresponds to lower k,,. This may imply the minor influence of
mass fluctuation on k,, in HECs. In contrast, increased tenden-
cies can be clearly observed in both volumetric and shear strain
fluctuations (see Figure 5d—g) at both 300 K and 2300 K, indi-
cating the lowered «,, in HECs may mainly be attributed to the
aggravation of strain fluctuations, i.e., lattice distortion.

Besides thermal conductivities, CTEs of HECs were fur-
ther predicted by machine-learning-potential-based MD simu-
lations. Figure 6a shows the calculated results and reported
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Figure 4. Tensile deformation for (Ta;4,Nby,Tiy4Zry4)C with machine-learning-potential-based MD simulations and AIMD calculations. a—c) Stress-
strain curves of SQS models and nanoscale models (MD-nano) at 300 K. d—f) Snapshots of fracture surfaces on (100), (110), and (111) planes from
AIMD (0.12, 0.6, and 0.16 strain, respectively). g—i) Snapshots of fracture surfaces on (100), (110), and (111) planes from machine-learning-potential-
based MD simulations (0.12, 0.16, and 0.16 strain, respectively). Black, orange, pink, blue, and green atoms represent the C, Ta, Nb, Ti, and Zr elements,

respectively.

experimental values of different 1HECs.[**~*8] The theoretical re-
sults are in good agreement with experimental reports (within
the bounds of experimental measurements), verifying the re-
liability of our predictions. It should be mentioned that those
1HECs with large predicted CTEs, i.e., MoC, WC, YC, and ScC,
are energetically unstable in their face-centered cubic (FCC)
phases from a thermodynamic perspective.l**) Moreover, CTEs
of the three above-mentioned typical HECs were also measured
to enrich the limited available CTE data of HECs. As listed in
Table 1 the calculated CTEs of HECs are comparable to the
ones from our measurements and previous research with ac-
ceptable discrepancies,3**! further confirming the feasibility of
our transferable machine-learning-potential-based MD predic-
tions for HECs. In contrast, the rule of mixtures (ROM) method,
generally regarded as an empirical way to roughly estimate the
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properties of HECs, was applied to evaluate CTEs of HECs in
Table 1. A great disparity between the ROM method and those of
experiments and reports can be found, which verifies the inaccu-
racy of the ROM method for HECs and shows the superiority of
our MD predictions. From Figure 6b, it is clear to see that CTEs
of 4-8HECs are all located within the predicted CTE bound of
1HECs (6.71-23.55 X 10=® K!) at 300 K. It should be noted that,
contrary to the high CTE predicted in the unstable MoC, VC, YC,
and ScC, the relatively high CTE in (Mo, ,,V; 4 S¢; 4 Y, ,)C at 300 K
is attainable due to the promising phase formation ability (PFA)
of (Mo, ,V,,Sc;,Y;,,)C[* suggesting the feasibility of search-
ing for exceptional performance in HECs with our transferable
machine-learning-potential-based MD simulations. Meanwhile,
it can also be found from Figure 6b that the ROM method has
a tendency to overestimate the CTEs of HECs compared to our
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Figure 5. Thermal

conductivities and strain field of
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(Tay;4Nbq 4Ty 4Zr14)C, (Tay/gNby 6 Tiy 62y Hfy gMo76)C,  and

(Ta‘l/gNb](gTi]/ng]/gHf]/gMO]/gV‘l/gW]/s)c. a) K)u(w) and the cumulative k,. b) Comparison of k|,; between machine-learning-potential-based

MD simu

ations and our measurements. c) Predicted k|, as a function of temperature. d) Volumetric strain distribution on a 2D slice of (100) plane.

e) Standard deviations of volumetric strain at 300 K and 2300 K. f) Shear strain distribution on a 2D slice of (100) plane. g) Standard deviations of shear

strain at 300 K and 2300 K.

predicted results. From Figure 6c, it can be deduced that HECs
with fewer TM elements tend to possess larger or smaller CTEs,
achieving the maxima values in (Mo, ,V,,Sc;,Y,,,)C at 300
K and (MoysTi;5Vy/5S¢;5Y;5)C at 2300 K, and the minimum
in (Ti,Zr,,Hf;,Ta, ,)C at 300 K and (Ti,,Hf, ,Ta, ,Nb,,)C
at 2300 K (see Table S5, Supporting Information). Therefore,
Ti, Hf, and Ta elements are preferable to lower the CTEs of
HECs (see Figure S14, Supporting Information), which are
beneficial to further applications of composites with silicon-
based substrates. Additionally, the increase in temperature re-
sults in an obvious overall increase in CTEs from 300 K to
2300 K.

Since the melting points (T,,) of carbides are generally over
3200 K,P%3 it is difficult to measure them directly in ex-
periments. By utilizing transferable machine-learning-potential-
based MD computations, the T,, of various HECs can be rapidly
predicted. As shown in Figure 6d and Table S6 (Supporting
Information), the theoretical predictions for T,, of 1HECs are
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all in good agreement with reported experiments (the average
difference is less than 4.72%),50-53 indicating the reliability of
our transferable machine-learning-potential-based MD computa-
tions. From Figure Ge, it can be observed that the predicted T, of
HECs are all within the bound of predicted T,, of carbides, where
W is determined to be preferable in enhancing T, of HECs (see
Figure S15, Supporting Information) and (Ti, ,Hf; ,V,, W, ,)C
has the largest T, (4000 K) among all the predicted 4-8HECs
(see Table S7, Supporting Information). In contrast, ZrY-based
HECs tend to have lower T, reaching the lowest T, of 2500 K in
(Z1t1,4V1,4S¢;4Y,,4)C (see Table S7, Supporting Information). Al-
though the T, prediction of ROM in Figure 6e is improved com-
pared to that in CTEs, it still tends to overestimate the values for
4-8HECs. Meanwhile, the T, distribution of 4HECs is the widest
(see Figure 6f), indicating the possibility of achieving higher T,
in HECs with fewer TM elements. Additionally, as previous stud-
ies have reported a potential correlation between the cohesive en-
ergy and CTEs or T, [ the relationships between them in HECs
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Figure 6. CTEs and T,,, of n(HECs from machine-learning-potential-based MD simulations with transferable NEP, reported experiments, and ROM calcu-
lations. a) CTEs of different THECs from machine-learning-potential-based MD simulations and reported experiments.[“°=48] Error bars are the maximum
and minimum of the reported values. b) CTEs of 4-8HECs between machine-learning-potential-based MD simulations and ROM calculations. c) CTEs
of 4-8HECs at 300 K and 2300 K. d) T,, of different THECs from machine-learning-potential-based MD simulations and reported experiments.[50->3]
e) T,, of different 4—-8HECs between machine-learning-potential-based MD simulations and ROM calculations. f) T, of 4-8HECs. g) Relationship be-
tween the cohesive energy and CTEs from machine-learning-potential-based MD simulations. h) Relationship between the cohesive energy and T,,, from
machine-learning-potential-based MD simulations. i) Pearson correlation between different properties.

were also explored. As shown in Figure 6g,h, it can be seen that
CTEs have no evident correlation with the cohesive energy, while
T, is predicted to be strongly correlated to the cohesive energy.
These results can also be obtained quantitatively by the Pearson
correlation coefficients calculated in Figure 6i, where almost no
correlations can be found for CTEs with ROM or cohesive energy,
while the cohesive energy-T,, and ROM-T,, pairs are strongly cor-
related, unrevealing the importance of binding and elements of
HECson T,,.

3. Conclusion

In this work, we predicted the mechanical and thermal proper-
ties of HECs by enabling machine-learning-potential-based MD
simulations via constructing a transferable NEP with wide com-
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positional applicability for HECs. To be specific, the efficiency,
accuracy, and transferability of the trained NEP for HECs based
on the small 1+2HEC training dataset with an equal number of
ergodic chemical compositions have been identified, resulting in
the construction of a highly accurate and transferable NEP for
HECs with low RSMEs of 15.7 meV atom~!, 301 meV A~!, and
49.1 meV atom™ for energy, force, and virial, respectively. On
the basis of MD simulations with our established transferable
NEP, mechanical and thermal properties, including elastic prop-
erties, tensile behaviors, ky,,, CTEs, and T, of HECs, are pre-
dicted to be consistent with results from first-principle calcula-
tions and experimental measurements, further validating the re-
liability of predicting mechanical and thermal properties of HECs
with the transferable machine-learning-potential-based MD sim-
ulations. Our work provides a simple and efficient strategy for
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Table 1. CTEs of HECs from transferable machine-learning-potential-based
MD predictions, reported literature, our measurements, and ROM.

HECs CTE [x107¢/K]

Exp MD ROM
(Tay 4 Nby s TigjaZry4)C 7.05 8.00 8.59
(TiyysZrys Hfy s Tag s Wy 5) C 7.70 (AIMD)!46] 8.05 9.29
(TiyjsZrq s HfysNby s Tay 5)C 7.85 (MD)132] 7.82 8.28
(Tay 6Nb 6 Tiy 216 Hy 6MOy6) C 7.07 8.25 9.11
(Tay gNby 5 Tig g Zry s Hfy g Moy 5V 5 W5 5)C 7.06 8.84 10.20

developing high-entropy ceramics with desirable mechanical and
thermal properties.

4. Experimental Section

DFT Calculations: ~ All DFT calculations were implemented in the Vi-
enna ab initio simulation package (VASP) with the projector augmented
wave (PAW).153:56] The Perdew-Burke-Ernzerhof (PBE) under the general-
ized gradient approximation (GGA) was applied to approximate the elec-
tronic exchange and correlation function.l>’! Ten non-magnetic metallic
elements of group I1IB, IVB, VB, and VIB were selected for ease of DFT
calculations and DFT elapsed time comparison. Supercells of 1-10HECs
were built based on the ZrC conventional cell, and the SQS approach
was performed in the Alloy Theoretic Automated Toolkit (ATAT) for 2—
10HECs.138>%] Detailed supercell sizes are summarized in Table S8 (Sup-
porting Information). All the structures were fully relaxed initially to obtain
the lattice constants. Additionally, elastic tensors from DFT were calcu-
lated using the energy-strain approach.[®°] Voigt-Reuss-Hill method was
also used to evaluate the B and G of HECs.[®1]

To build training and testing datasets, AIMD calculations with only the
T point in the Brillouin zone considered were performed.l52] A low plane-
wave energy cutoff of 300 eV was used to accelerate the collection of
enough different structural configurations. A time step of 3 fs and a to-
tal simulation time of 6 ps were applied under the NPT ensemble. The
simulated temperatures were set to 1000, 2000, 3000, and 4000 K, re-
spectively. For high-accurate single-point calculations of configurations,
the plane-wave cutoff energy was set to 450 eV, and the Brillouin zone
was sampled employing the I'-centered method with a separation of ap-
proximately 0.5 A=1.193] The energy convergence criterion of the electronic
self-consistency cycle was set to 107> eV.

For the AIMD simulations of the tensile deformation along different di-
rections, SQS supercell models with 3x2x2 conventional cell of 96 atoms
for the [100] direction, 2x2x3 [110] cell (x || [110], y || [110], z || [001]) of 192
atoms for the [110] direction, and 3x1x1[111] cell (x || [111], y || [127], z ||
[101]) of 144 atoms for the [111] direction, respectively, were constructed.
To ensure the accuracy and efficiency of the simulations, a time step of
1 fs and a cutoff energy of 400 eV was applied. Equilibration of all mod-
els at 300 K was first obtained for 1 ps relaxation under the NPT ensem-
ble, followed by 1 ps NVT simulations, and then the equilibrated models
were elongated along the corresponding direction with a 2% increment in
strain. All the tensile supercells were then equilibrated under the NPT en-
semble with the fixed directional elongation for 1 ps at each deformation
step. The averaged stress tensors were collected for the final 0.1 ps.

NEP Constructions: Small-scale THEC, 2HEC, 3HEC, and 1+2HEC
training datasets were first developed with each comprising 1000 configu-
rations from AIMD calculations. The distribution of different TM elements
in the datasets was ensured with the highest degree of equality. Differ-
ent numbers of THEC configurations were considered in the small-scale
1+2HEC training datasets with ratios of 18.18% (equal numbers for all
chemical compositions of THECs and 2HECs), 40%, 60%, and 80%. Based
on these training datasets, state-of-the-art NEPs were then trained within
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the Graphics Processing Units Molecular Dynamics (GPUMD) code.[%4]
The detailed training hyperparameters are listed in Table S9 (Supporting
Information). In addition, a corresponding testing dataset with 1-TO0HECs
was constructed by a total of 300 randomly selected configurations (30
configurations for each nHEC) to evaluate the performance of the trained
NEPs from these small-scale training datasets.

Alarge 1+2HEC training dataset containing 55 kinds of chemical com-
positions and 5500 configurations (100 configurations for each composi-
tion collected from AIMD) was built to train the accurate NEP for HECs.
Meanwhile, 1500 configurations of randomly picked 71 kinds of HECs (ten
kinds of chemical compositions each from 3-9HECs and the unique com-
position from 10HEC) were collected to build the 3-TOHEC testing dataset
with the best assurance of equally distributed TM elements. 20 configura-
tions in each of the 3-9HEC compositions and 100 configurations in the
10HEC composition were selected from AIMD at the abovementioned four
temperatures for static calculations.

Machine-Learning-Potential-Based Molecular Dynamics Simulations:
The Large Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package was utilized to perform MD simulations inter-
faced with the NEP code.%°] All the simulated models were built by
randomizing the TM elements in a 20x20x20 FCC supercell (a total
of 64 000 atoms). A time step of 1 fs was maintained throughout the
simulations. Periodic boundary conditions were used in all directions. All
models were first equilibrated using the NVT ensemble for a period of
10 ps, and then relaxed using the NPT ensemble for a period of 10 ps, and
finally equilibrated using the NVT ensemble for a period of 10 ps at 300 K.
Temperature-dependent elastic tensors were computed at 300 K and 2300
K, respectively, by taking Born term into account within 10 ps. The mag-
nitude of strain was set to 107°. For a better comparison, elastic tensors
of DFT SQS models using energy-strain methods were also evaluated
with the NVT ensemble for 10 ps. The MD simulation setup of tensile
deformation was performed at an engineering strain rate of 0.01 ps™'
for 20 ps. To consider the size effects, both the tensile deformations of
the previous-mentioned SQS models and nanoscale models (20x20x20
conventional cell of 64 000 atoms for the [100] direction, 20x20x20 [110]
cell of 128 000 atoms for the [110] direction, and 15x15%15 [111] cell
162 000 atoms for the [111] direction, respectively) were explored with
the above-mentioned model equilibration. k,, was predicted by using the
GPUMD package through the HNEMD method with a timestep of 1 fs
and periodic boundary conditions.[®*] All models were equilibrated for
20 ps using the NPT ensemble with a target temperature of 300 K before
collecting the following 2 ns heat current data in the NVT ensemble.
During HNEMD simulations, the driving force was chosen as F, = 0.0001
A-1, and five independent simulations for each sample were performed
to calculate the average thermal conductivity. A total correlation step of
200, a maximum angular frequency of 400 THz, and a sample interval of
2 were used for k|, (w) calculations. In addition, the mass fluctuations
were computed as follows:

mi—m
Massﬂuctuations=2x,.< — >2 m

i m

where m; is the atomic mass of the i-th element, x; is the fractional con-
centration of the i-th element, and m is the average mass of all elements.
The atomic strain tensor (E:Zb) was measured using the Green-Lagrangian

strain tensor, and the volumetric strain and shear strain were defined as
follows:[66]

i i i
S I

3

Volumetric strain =

)

(et —ey) + (e - )+ (e -e)’ 5

. 2 P2 i 2
_ i i i
Shear strain = \Jew +e, +e, +

Moreover, equilibrium lattice constants from 300 to 2300 K with an in-
terval of 500 K were obtained, and the corresponding quadratic functions
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were fitted to evaluate CTEs at different temperatures. The T,, was simu-
lated by first equilibrating at 2000 K for 100 ps using the NVT ensemble
before being elevated to 4000 K with a heating rate of 5 K ps~! using the
NPT ensemble. The cohesive energy was computed by minimizing the po-
tential energy of the HEC cells:

Cohesive energy = Z E; — Eqec (4)
i

where E; and E ;¢ are the potential energy of the i-th atom and the mini-
mized HEC cell. The Pearson correlation between features and CTEs or T,
was evaluated to reveal the correlation between different properties:[67]

Y (x5 —X) (y; —7)

Pearson correlation = (5)

\/Z 0 =22 (v =)’

where x; and y; are the i-th values of two different input features, respec-
tively. X and y are the expectations of the two different input features, re-
spectively.

Experimental  Methods:  The high-quality (Taq;4Nby4Tiy/4Zry/4)C,
(Tay 6Nby6Tiy 6211 6HFr s Moy 6)C, (Tay sNby g Tiy g Zry gHfy gMoy gVy g
W/3)C samples were fabricated via a two-step strategy involving ultrafast
high-temperature synthesis and hot-press sintering techniques. The
detailed synthesis process can be found in this previous work.38] The
CTEs of the samples (13.5 mm X 3 mm X 3 mm) were measured over
the temperature range of 373-998 K at a heating rate of 5 K min~" in
a nitrogen atmosphere by a high-temperature dilatometer (Netzsch
DIL 402C, NETZSCH, Selb, Germany). The referenced temperature for
calculating CTEs was 298 K. The thermal diffusivity (h) was measured
at room temperature under an argon flow by a laser-flash apparatus
(Netzsch LFA 427, Netzsch, Selb, Germany). k., of the samples was
evaluated according to the following equation:[®8]

Ktot:h'p’cp (6)

where C, is the specific heat capacity estimated based on the Dulong-
Petit law and p is the density of the samples measured by the Archimedes
drainage method. As p of all samples were almost the same as theoretical
ones, no correction on k. was considered. In addition, the electrical con-
ductivity (o) of samples at room temperature was measured on a commer-
cial apparatus (CTA-3, Cryoall, Beijing, China) under a helium atmosphere,
and the corresponding k. was computed according to Wiedemann-Franz
law:(6°]

ele

Kee=L-0-T 7)

where L = 2.44 x 1078 W Q K2 is the Lorenz number, and T is the abso-
lute temperature. The lattice thermal conductivity (k| = Kior — Kele) Was
thereby obtained.

Statistical Analysis:  The statistical results in all boxplots were analyzed
by Origin software and depicted as medians, means, maximums, and min-
imums. The Pearson correlation analysis was used with a prepared Python
script.

Supporting Information
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