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1� , 2�, and 3� methods for measurements of thermal properties
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3� methods are commonly used to measure the thermal conductivity of a substrate adjacent to a
strip heater or the thermal conductivity and specific heat of a suspended wire. Here we consider the
general case of a line heater that is also used to sense temperature. Analysis of all harmonics is
presented in terms of generic thermal and electrical transfer functions and is readily adapted to other
experimental configurations. We identify voltage signals at 2� and 1� that contain the same
information about the thermal properties as the 3� signal. The 2� voltage requires a dc offset at the
current source. The 1� voltage requires a very stable current source, but eliminates the need for
higher-harmonic detection, and is advantageous for studying the dynamics of systems with very fast
thermal response times. The 1� , 2�, and 3� methods compare favorably with experiments using a
suspended platinum wire and a line heater on a Pyrex substrate. With a modern lock-in amplifier, no
common-mode voltage subtraction is necessary, which simplifies the experiment compared to the
common practice of balancing a bridge or using a multiplying digital-to-analog converter. We also
show that the widespread practice of using a voltage source to approximate a current source is only
valid when the sample resistance is small compared to the total electrical resistance of the circuit,
and derive and experimentally verify a correction factor to be used otherwise. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2130718�
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I. INTRODUCTION

3� methods have proven to be valuable for measuring
the thermal properties of various systems. In the basic
method, a line heater is driven by a sinusoidal current source
at angular frequency �, causing a temperature fluctuation at
2� related to the thermal properties of the heater and/or its
surrounding environment. This perturbs the heater resistance
at 2�, leading to a voltage signal at 3�. By varying the
configuration of heater and its surroundings, 3� methods
have been used to measure the specific heat c �Refs. 1 and 2�
and thermal conductivity k of a suspended wire,3 k of solids4

and thin films,5,6 and k and c of liquids.7,8 To achieve a good
signal-to-noise ratio, the much larger Ohmic signal at 1� is
typically canceled either by nulling a bridge1,2,8 or by sub-
traction with a multiplying digital-to-analog converter.4

However, when using a lock-in amplifier with sufficient dy-
namic reserve, it is simpler to omit this cancellation step.3

Another issue in implementing 3� methods is that some
lock-in amplifiers do not have third-harmonic detection built-
in, requiring an external frequency tripler.2,4,8

A different class of experiments involves Joule heating a
serpentine wire on a platform using a large direct current and
measuring the resulting temperature rise using lock-in detec-
tion of a small alternating current superposed through the
same heater. As reported by Shi et al.,9 the proportionality
between temperature and voltage can vary by a factor of 3
depending on the period of the ac sensing current compared
to the thermal time constant of the system.

Here we unite the various traditional 3� methods as well

as the dc-heating/ac-detection experiments under a more

0034-6748/2005/76�12�/124902/14/$22.50 76, 12490
general framework of thermal and electrical transfer func-
tions. This framework can be applied to any thermal system
containing a line heater that is also used to sense tempera-
ture. A related transfer function approach is used in hot-wire
anemometry, with a focus on direct currents only.10 Here,
voltages at 1� and 2� are shown to contain the same infor-
mation about thermal properties as the 3� voltage does. The
2� signal requires a dc offset at the driving current source.
The 1� signal eliminates the need for higher-harmonic de-
tection and may also be useful for systems with very fast
thermal response, such as nanowires. The 1� ,2�, and 3�
methods are verified experimentally using both a line heater
on a Pyrex substrate and a suspended platinum wire, without
any common-mode subtraction.

The usual 3� analysis assumes that the circuit is driven
with an ideal current source, but it is more common and
convenient to use a voltage source instead. The important
distinctions between current and voltage sources have not
been adequately discussed in the literature. Here we also
derive and verify a correction factor that permits the usual
current-source analysis to be adapted to experiments per-
formed with a voltage source. This correction factor is im-
portant whenever the electrical resistance of the sample is a
significant fraction of the total resistance of the circuit.

II. GENERAL TRANSFER FUNCTION FRAMEWORK

A. Thermal transfer functions

We are interested in systems containing a single heater
that is also used to sense temperature through changes in its

electrical resistance. Such systems may be described quite

© 2005 American Institute of Physics2-1
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generally by a linear thermal transfer function Z, relating the
average temperature rise of the heater �avg to the heat input
Q. In the frequency domain,

�� = Q�Z , �1�

where the � subscript denotes Fourier-transformed quanti-
ties. In the time domain,

�avg�t� = Q�t� � Zt, �2�

where � denotes convolution and Zt is the inverse Fourier
transform of Z. For example, sinusoidal heating at frequency
�H

Q�t� = Q0 sin��Ht� �3�

leads to a temperature response in the time domain

�avg�t� = Q0 Re�Z��H��sin��Ht�

+ Q0 Im�Z��H��cos��Ht� . �4�

The thermal transfer function may be complex and frequency
dependent. It contains information about the thermal proper-
ties of the system, such as thermal conductivity and/or spe-
cific heat of the heater and/or its surroundings.

B. Electrical transfer functions

By measuring the electrical current I and voltage V
across the heater, we can determine the thermal properties of
the system. First the thermal transfer function must be re-
lated to an electrical transfer function.

The traditional 3� approaches are summarized in Fig.
1�a�. A sinusoidal current at frequency � leads to Joule heat-
ing with a 2� component. The magnitude and phase of the
resulting temperature rise at 2� depend on Z. Due to the
temperature coefficient of resistivity �, the electrical resis-
tance of the heater also contains a modulation at 2�. Finally,
the current at � mixes with the resistance at 2� leading to a
voltage signal at 3�. Here we derive the analogous results
for the more general case of a sinusoidal current with a dc
offset. As shown in Fig. 1�b�, we will see that the dc offset
leads to additional Joule heating at 1� and a voltage at 2�.

In general, the electrical resistance of the heater is given

by
Re�t� = Re0�1 + ��avg�t�� , �5�

where Re0 is the electrical resistance in the limit of zero
current and �avg is averaged over the length of the heater. The
temperature fluctuations within the heater must be small
enough so that � may be treated as a constant. It is easily
shown that Eq. �5� holds even if the temperature profile ��x�
varies along the length of the heater, as long as the cross
section is uniform. Because ��avg�1, to leading order Q can
be approximated as

Q�t� = I2�t�Re0. �6�

Combining Eqs. �5� and �6�, the voltage drop across the
heater is

V�t� = I�t�Re0�1 + �Re0Zt � I2�t�� . �7�

Finally, using the frequency convolution theorem of Fourier
transforms, the voltage in the frequency domain is given by

V� = �Re0/2��I� � �2����� + ��Re0/2���I� � I��Z� , �8�

where � is the Dirac delta function.
Equation �8� applies to any current. Because it is nonlin-

ear in I, we cannot use superposition and instead focus on the
particular case of heating by a sinusoidal current at fre-
quency �1 with a dc offset:

I�t� = Idc + I1 sin��1t� , �9�

where it is convenient to define

� = Idc/I1. �10�

In the frequency domain,

I� = I1��2����� + j����� + �1� − ��� − �1��� , �11�

where j=�−1.
Applying this current to the analysis described above,

the voltage response occurs at dc and three harmonics

V�t� = Vdc + V1��t� + V2��t� + V3��t� , �12�

FIG. 1. Schematic relationship between current, volt-
age, and thermal transfer functions. �a� Traditional 3�.
�b� Addition of a dc offset to the driving current, result-
ing in additional terms for 1� heating and 2� voltage.
which can be expressed as
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V�t� = �Re0
2 I1

3�
n=0

3

�Xn��1,��sin�n�1t�

+ Yn��1,��cos�n�1t�� , �13�

where the summation is over the harmonics n. Here Xn and
Yn are the in-phase and out-of-phase electrical transfer func-
tions. In terms of rms quantities as usually measured by
lock-in amplifiers,

Vn�,rms

2�Re0
2 I1,rms

3 = Xn��1,�� + jYn��1,�� . �14�

The resulting Xn and Yn are given in Table I. This is the most
important result of the article. It shows that the various elec-
trical harmonics are rich with information about any thermal
transfer function. For example, at 3� the in-phase �X3� and
out-of-phase �Y3� voltages are proportional to the real and
imaginary parts of the thermal transfer function, respectively.
Because they are a response to the Joule heating at twice the
driving current, Z is probed at 2�1.

The 2� voltages X2 and Y2 are only present in the case
of a dc offset ���0�. The in-phase 2� voltage is sensitive to
the imaginary part of Z, while the out-of-phase 2� voltage is
sensitive to the real part of Z. Furthermore, each 2� voltage
has contributions from the thermal response at both �1 and
2�1. This is because the Joule heating now has components
at both 1�1 and 2�1, as seen in Fig. 1�b�. The heating at 1�1

contributes a voltage at 2�1 after mixing with the 1�1 com-
ponent of the current, and the heating at 2�1 also contributes
a voltage at 2�1 after mixing with the dc component of the
current.

The 1� voltages X1 and Y1 are somewhat more compli-
cated. Similar to Y3 ,Y1 has information about the imaginary
part of Z�2�1�, arising from the 2� heating which is mixed
back to 1� by the 1� component of the current. Whenever
there is a dc offset in the current Y1 has an additional con-
tribution from Z��1� due to the mixing of heating at 1� and
the direct current. The in-phase voltage X1 has analogous
contributions from both of these effects �the final two terms
of X1 in Table I� plus two other terms. The first term of X1 is
simply the large Ohmic response V= I1Re0, after normalizing
according to Eq. �14�. The second term of X1, multiplying
Z�0�, is the response to dc heating. This arises from both the
dc offset �the �2 term� and, importantly, the dc component of
�I1 sin��1t��2.

The in-phase 1� voltage is unique because it contains
information about the dc thermal response even in the high-

TABLE I. 0� ,1� ,2�, and 3� electrical transfer functions defined by Eq. �14
general result applies to any system with a line heater that is also used to m

Harmonic n In-phase electrical transfer function �Xn��

0 0

1 1

2�Re0I1,rms
2 + ��2+ �1/2��Z�0�+2�2 Re�Z��1��+ �1/4

2 ��1/2��Im�Z�2�1��+2Im �Z��1���

3 −�1/4�Re�Z�2�1��
frequency limit. Because of thermal capacitance effects,
most thermal transfer functions should become small at high
frequencies. Thus X2 ,X3 ,Y1 ,Y2, and Y3 should die out at
high frequencies. But X1 retains a term multiplying Z�0�,
allowing the dc thermal response to be measured at high
frequencies. This is because there is always a dc component
in the I2R heating, even at high frequencies. For example,
with Idc=0 ��=0�, the high-frequency limit of X1 has an
Ohmic voltage plus Z�0� /2, while in the low-frequency limit
the contribution is 3Z�0� /4. The opposite limit is Idc� I1

���1�. In this case the high-frequency limit of X1 is domi-
nated by the contribution of �2Z�0�, while the dominant con-
tribution at low frequency is 3�2Z�0�. This shows that the
factor of 3 difference between low- and high-frequency re-
sistances reported by Shi et al.9 ��	10� is a general result,
further indicating the broad applicability of the current trans-
fer function framework.

Finally, in the presence of a dc offset in the current there
is also a dc voltage across the sample. This is labeled as out
of phase in Table I because of the convention introduced in
Eq. �13�. The three terms of Y0 comprise a large Ohmic
voltage, a contribution from the same dc heating as the sec-
ond term of X1, and the mixing of 1� heating and 1� current
back to dc. These dc signals are not expected to be useful
because they are subject to low-frequency drifts and thermo-
electric voltages.

C. Current versus voltage source

The derivation above follows the usual assumption of an
ideal current source at 1�. In practice it often easier to use a
voltage source, such as a function generator or the sine wave
output of a lock-in amplifier. Although an operational ampli-
fier circuit may be used to convert this voltage source to a
current source,3 it is more common to use the voltage source
directly while analyzing the data as if a current source had
been used. Here we show that this simplification is valid only
if the sample resistance is small compared to the total resis-
tance of the circuit and give a correction factor to use when
the sample resistance is larger. Holland and Smith have also
briefly considered the case of a voltage source for the special
case of a suspended wire.11

Referring to Fig. 2�a�, the total electrical resistance of
the circuit Rtotal consists of the time-varying sample resis-
tance Re�t� plus all other “ballast” resistances Rb, which are
assumed constant over time. The ballast resistance includes
the leads, the output impedance of the voltage source, and
any additional resistors. For this voltage divider it is always

a thermal transfer function Z driven by current I= I1��+sin��1t��. This very
re temperature.

� Out-of-phase electrical transfer function �Yn��1 ,���

��2� 1

2�Re0I1rms
2 + ��2+ �1/2��Z�0�+Re�Z��1���

Z�2�1�� �1/4�Im�Z�2�1��+2�2 Im�Z��1��

−��1/2��Re�Z�2�1��+2Re�Z��1���

−�1/4�Im�Z�2�1��
� for
easu

1 ,��

�Re�
true that
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V�t�
Vs�t�

=
Re�t�

Rb + Re�t�
, �15�

where Vs�t� is the time-varying voltage source.
In the usual way, we neglect the small resistance pertur-

bations when calculating the Joule heating,

Q�t� 

V2�t�
Re0

=
Vs

2�t�
Re0

� Re0

Rb + Re0
�2

. �16�

Equations �2� and �5� still hold, so

Re�t� = Re0�1 + �Zt � Q�t�� . �17�

The current through the circuit is then

I�t� =
Vs�t�

Rb + Re�t�



Vs�t�
Rb + Re0

	
1 − � Re0

Rb + Re0
��Zt � Q�t�� , �18�

where the negative sign arises from the leading-order Taylor-
series expansion of �1+�Zt � Q�−1. This shows that, if Re0 is
a small fraction of �Rb+Re0�, the true current is approxi-
mated well by the usually assumed Vs / �Rb+Re0�, but that an
adjustment must be made otherwise. Comparing Eq. �18�
with Eq. �7� further suggests that in the case of a voltage
source at 1�, it would be more appropriate to measure the
harmonics of current to determine the thermal transfer func-
tion. Results analogous to Table I could be derived to give
the electrical transfer function for a current in response to a
voltage input of

Vs�t� = Vs,dc + Vs,1 sin��1t� . �19�

However, it is perhaps more useful to summarize this analy-
sis by providing a correction factor to the results previously
derived for a current source. To see this combine Eqs. �15�
and �17�, again using leading-order expansions, yielding

V�t� 
 Vs�t�� Re0

Re0 + Rb
�
1 + � Rb

Re0 + Rb
��Q�t� � Zt� .

�20�

Finally, recognizing that the usual analysis assumes the cur-

FIG. 2. �a� Circuit for analyzing the effects of using a voltage source rather
simple 1� ,2�, and 3� experiments. No steps were taken to remove the larg
source. Lock-in B was used to infer current from the voltage across a standa
the source voltage to the total circuit resistance.
rent to be given by
I�t� 
 Vs�t�/�Rb + Re0� �21�

then the voltage across the sample can be expressed as

V�t� = I�t�Re0
1 + �Re0I2�t� � Zt�1 −
Re0

Re0 + Rb
�� . �22�

This is identical to Eq. �7�, expect for the factor of 1
−Re0 / �Re0+Rb� multiplying Zt. Thus, even when using a
voltage source, it is still possible to use the current-source
analysis of Table I for data processing as long as the resulting
calculated Zapparent is corrected using

Ztrue = Zapparent�1 −
Rsample

Rtotal
�−1

. �23�

The Rsample term should include all current-carrying resis-
tances that exhibit 3� harmonics, even if they lie outside the
voltage probes, and thus may actually be larger than Re0.
This important point is clarified in Sec. IV C. The relative
importance of the correction factor is seen to be the same as
the relative contribution of the sample resistance to the total
resistance of the circuit. This correction factor applies to any
3� system using a voltage source for experiment but assum-
ing a current source for data processing.

III. EXPERIMENT

To demonstrate the validity and generality of the analy-
sis summarized in Table I and Eq. �23�, these 1� ,2�, and 3�
methods were applied to two traditional 3� systems: an iso-
lated suspended wire �SW� and a line heater on a substrate
�LHOS�. In the former system the goal is to measure both k
and c of the heater itself, while in the latter system the goal
is to measure k of the substrate.

The experimental apparatus is summarized in Fig. 2�b�.
The various voltage harmonics across the sample were mea-
sured using lock-in amplifier A �Stanford Research Systems
SR850�. A sinusoidal voltage source at 1� was used to ap-
proximate a current source. The 1� current was determined
by measuring the 1� voltage across a heat-sunk 10 
 preci-
sion resistor �Vishay Dale, �	10−5 K−1� using lock-in B
�SR830�, which was also useful for precise phase corrections

a current source which is usually assumed. �b� Schematic of equipment for
common-mode voltage. A voltage source was used to approximate a current
sistor. If lock-in B is omitted, the current can be estimated from the ratio of
than
e 1�
rd re
of the 1� signals. The correction of Eq. �23� was applied
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whenever the sample resistance was more than a few percent
of the total circuit resistance. When dc offsets were required
the voltage source was a function generator �HP 33120a�;
otherwise, the sine wave output of lock-in A was preferred to
minimize phase errors.

Samples were mounted in a vacuum chamber and the
temperature was controlled to 300 K �Lakeshore 330�. Ra-
diation losses were minimized by shielding, convection
losses by operating in a vacuum of typically 	10−5 torr, and
conduction losses by using small diameter alloy wires for
electrical connections. For the suspended-wire experiment
the sample was a 50.8-�m �2 mil�-diam, 28.7-mm-long plati-
num wire �99.99% purity, Re0	1.5 
� soldered in a four-
point configuration directly to the prongs of the sample
holder. For the line-heater-on-substrate experiment, the
sample was Pyrex, about 3 mm thick, with a microfabricated
metal heater about 33 �m wide. The voltage drop was mea-
sured across the central 1000 �m �Re0	54 
� of the
3000-�m-long heater. For both systems the temperature co-
efficient of resistivity was determined by measuring the
resistance at several temperatures between 300 and about
320 K.

Similar to the approach of Lu et al. for suspended wires3

but counter to common practice for 3� measurements, we
have not used any noise cancellation scheme, such as nulling
a bridge,1,2,8 or subtraction of the voltage across a series
resistor using a multiplying digital-to-analog converter.4 This
omission is successful only because of the high resolution
and large dynamic reserve of lock-in A. With the optimal
settings of maximum gain and minimum dynamic reserve,
we routinely observe stable voltage steps of approximately
0.06 ppt of the full-scale sensitivity, corresponding to 1 part
in 214. This is far better than the specified 1% absolute accu-
racy of the instrument and highlights an important detail
when studying the 1� signals: To avoid absolute errors be-
tween the various gain settings, we always keep the gain
constant when sweeping frequency and/or amplitude at any
one temperature point.

Other experimental details include dc coupling the input
and turning off all line filters to keep from distorting these
signals over the typical frequency range of 0.01–100 Hz. We
assumed that the phase reported by lock-in B for the current
represented the true value, and so some of the measurements
were affected by phase disagreements between lock-ins A
and B of 	0.1°. We have confirmed that the phase accuracy
could be improved to 	0.02° in the future by zeroing the
phase of each lock-in at each frequency while driving a
small-amplitude 1� current. This is especially important for
1� measurements and when using an external function gen-
erator. Finally, it is possible to omit lock-in B and instead
measure the current simply by the ratio of the source voltage
to the total resistance of the circuit. This gives a sufficient
accuracy for most purposes, but requires knowledge of the
circuit resistance at each temperature of measurement, and
the resulting phase errors may degrade the out-of-phase 1�
signal.
IV. RESULTS

The suspended-wire and line-heater-on-substrate sys-
tems are discussed separately. For each, the theoretical ther-
mal and electrical transfer functions are first derived. Then,
data are presented to validate the expected dependencies on
alternating and direct currents. Finally, the measured electri-
cal transfer functions are presented, and the corresponding
thermophysical properties of platinum �k and c� and Pyrex
�k� are extracted according to 1� ,2�, and 3� methods inde-
pendently. The correction factor of Eq. �23� is also verified
below.

A. Suspended wire „SW…

1. Theoretical transfer functions

The thermal transfer function for an isolated SW with
thermally clamped ends was given by Lu et al. as a series
solution.3 A closed-form solution for the spatial temperature
profile is derived in Appendix A. The resulting thermal trans-
fer function for a wire of length 2l and cross-sectional area
S is

ZSW��H�

=
�sinh � − sin �� +j�sinh � + sin � − ��cosh � + cos ���

�C�H�cos � + cosh ��
,

�24�

where C is the thermal capacitance of the wire,

� = ��H
/2, �25�

and characteristic diffusion time is


 = 4l2/� , �26�

where � is the thermal diffusivity.
This transfer function is depicted by the solid lines in

Fig. 3. The shape is reminiscent of a lumped first-order

FIG. 3. Thermal transfer functions �average temperature rise per unit heat
input� as a function of heating frequency for an isolated, suspended wire
with thermally clamped ends. The transfer function is nondimensionalized
using the thermal resistance Rth=2l /kS and the frequency using the thermal
diffusion time 
=4l2 /�. The solid lines are the exact solution, and the dots
are a lumped approximation.
�RC� system, so we are motivated to determine the lumped
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transfer function ZSW,lump that is the best approximation to
ZSW. As derived in Appendix B, the appropriate transfer
function is

ZSW,lump��H� =
Rth

12

 1 − j�H
/10

1 + ��H
/10�2� , �27�

where the thermal resistance is

Rth = 2l/kS . �28�

As shown by the dots in Fig. 3, ZSW,lump is an excellent
approximation to ZSW over most frequencies.

It is convenient to nondimensionalize ZSW,Xn, and Yn

using Rth /12:

Z̃SW = 12ZSW/Rth,

X̃n = 12Xn/Rth,

Ỹn = 12Yn/Rth. �29�

Similarly, we define

�̃H = �H
/10. �30�

Then Eq. �27� becomes

Z̃SW,lump��̃H� =
1 − j�̃H

1 + �̃H
2 . �31�

The electrical transfer functions obtained by substituting Eq.
�24� into Table I are easily evaluated but cumbersome to
write out. On the other hand, Eq. �31� is so simple that it is
worthwhile to give the electrical transfer functions explicitly
for the lumped approximation �Table II�. As shown in Fig. 4,
the exact �solid lines� and lumped �dashed lines� electrical
transfer functions are essentially identical at low frequencies
and still agree very closely even at high frequencies. Al-
though the data analysis in the present work uses the exact
solution, the lumped solution is simpler to use and should be
adequate for most purposes.

2. Current dependencies
The various electrical transfer functions of Table I show

different scalings with I1 and Idc �through ��. The scalings
are compared with SW experiments in Fig. 5�a� for 3�, Figs.
6�a� and 6�b� for 2�, and Figs. 7�a�–7�d� for 1�. Figure 5�a�
confirms that at constant frequency, both in-phase �VX3

� and
out-of-phase voltages �VY3

� at 3� are proportional to I1
3.

Similarly, Figs. 6�a� and 6�b� confirm that the 2� voltages
3

TABLE II. Dimensionless 0� ,1� ,2�, and 3� electrical transfer functions de
approximation �Eq. �31��.

Harmonic �n�
Dimensionless in-phase electrical transfer f

�X̃n,SW,lump��̃1 ,���

0 0

1 6

�RthRe0I1,rms
2 + ��2+1/2�+

�1/4�

1+4�̃1
2 +�2 2

1+�̃1
2

2 −�� /2�� 2�̃1

1+4�̃1
2 +

2�̃1

1+�̃1
2�

3 �−1/4� 1

1+4�̃1
2

scale with I1 and are linearly proportional to �.
Figures 7�a�–7�d� also show the expected scaling with I1
3

and �2. Figure 7�a�, in particular, shows that the small
change in VX1

due to Joule heating can be distinguished from
the much larger Ohmic signal, without any common-mode
subtraction. The intercepts at I1=0 of the two curves of Fig.
7�a� should in principle be identical, and the slight disagree-
ment of approximately 1 ppt is an indication of the uncer-
tainties in phase and amplitude at the two different frequen-
cies. The fact that the �=0 intercepts of Fig. 7�d� are positive
rather than negative as predicted by Table II is due to the
phase error between lock-in A and the function generator.
The phase uncertainty between lock-in A and lock-in B was
typically 	0.1°, corresponding to a coupling of about 2 ppt
from VX1

into VY1
. Figure 7�c� shows that VX1

was typically
10 mV, corresponding to an uncertainty of 	20 �V coupled
into VY1

. This value is consistent with the offset in Fig. 7�d�.
Particularly for the 1� methods, this shows that it is not the
absolute values of Xn and Yn, but rather their slopes with
respect to I1 and/or Idc, that are most reliable for determining
the thermal transfer functions.

3. Measured transfer functions
Having confirmed the expected dependencies on I1 and

Idc at constant frequency, the electrical transfer functions at
1� ,2�, and 3� were then measured at constant current
while sweeping the frequency. The results are compared to
the theoretical transfer functions in Fig. 4. The lowest fre-
quency measured was 0.01 Hz. Because of the long thermal
diffusion time �
	30 s�, it was inconvenient to measure the
data at lower �
 because of the long settling times involved.

For each harmonic, a least-squares fit was used to deter-
mine the Rth and 
 that give the best match between mea-
sured and theoretical transfer functions. The fit was applied
to both in-phase and out-of-phase transfer functions of a
given harmonic simultaneously, although either could also be
fitted separately. The thermal conductivity is calculated di-
rectly from Rth using Eq. �28�. The specific heat is calculated
from

c =



mRth
, �32�

where m is the mass of the sample based on the measured
geometry and the literature value of density. Because c in-
volves two different experimentally measured parameters its
uncertainty is larger than the uncertainty in k.

The resulting values of k and c are included in Fig. 4 and
12

by Eqs. �14� and �29� for the special case of a suspended wire in the lumped

n Dimensionless out-of-phase electrical transfer function

�Ỹn,SW,lump��̃1 ,���

��2� 6

�RthRe0I1,rms
2 + ��2+1/2�+ 1

1+�̃1
2�

−
�1/2��̃1

1+4�̃1
2 −�2 2�̃1

1+�̃1
2

−�� /2�� 1

1+4�̃1
2 + 2

1+�̃1
2 �

�1/4�
2�̃1

1+4�̃1
2

fined

unctio
compared with literature values. The values calculated
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from the 3� method are within about 1% of the literature
values for both k and c. The errors in values calculated from
1� and 2� methods are somewhat worse, about 5% for k and
10% for c. This is consistent with the fact that there is
slightly more scatter of the measured points about the theo-
retical curves of Fig. 4 for 1� and 2�. The increased uncer-
tainty at 1� may be due to the greater demands it places on

FIG. 4. 1� ,2�, and 3� electrical transfer functions �voltage non-dimension
the dashed lines are a lumped approximation, and the points are experim
indistinguishable from the exact solution. The values of thermal conductivity
and compared with literature values �Ref. 12�.

FIG. 5. 3� voltage vs 1� current, at constant frequency, showing the ex-
pected I3 trend. �a� Suspended platinum wire at 300 K. �b� Line heater on a

Pyrex substrate at 300 K.
the stability of both amplitude and phase of the voltage
source �in this case lock-in A�. The increased uncertainty at
2� may be due to the necessity of using the external function
generator as the voltage source.

B. Line heater on substrate „LHOS…

1. Theoretical transfer functions

The most widely known 3� method is that popularized
by Cahill,4 Birge,7 and Birge and Nagel8 to measure the ther-
mal conductivity of a substrate adjacent to a line heater. For
the case of a heater of length L on a semi-infinite substrate of
thermal conductivity ksubs, the thermal transfer function is
given by4

ZLHOS��H� = �− 1/2�ksubsL��ln �H + j�/2 + const� , �33�

where the unknown constant const is purely real, and the
frequency must be such that the thermal wavelength �
= ��subs /�H�1/2 is large compared to the heater width yet
small compared to the substrate dimensions. This transfer
function is depicted in Fig. 8. When �H=0 Eq. �33� diverges,
but ZLHOS�0� is actually limited to some finite value due to
the finite substrate size. Table III gives the specific electrical
transfer functions obtained by substituting Eq. �33� into
Table I. They are depicted graphically by the solid lines in

d by Eq. �14�� for a suspended wire. The solid lines are the exact solution,
data for a platinum wire at 300 K. The lumped approximation is almost
specific heat used to fit the data from each harmonic are given on the right
alize
ental

and
Fig. 9. For each harmonic, one of the �Xn ,Yn� signals is
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expected to vary linearly with ln �1, while the other signal is
expected to be a constant.

2. Current dependencies
The scalings of the LHOS voltages with current at two

different frequencies are shown in Fig. 5�b� for 3�, Figs. 6�c�
and 6�d� for 2�, and Figs. 7�e�–7�h� for 1�. Figure 5�b�
shows that the 3� voltages are proportional to I1

3 as expected.
Figure 6�c� shows that the 2� voltages also scale with I1

3 as
expected. However, the scatter of the experimental points
about the expected linear � dependence shown in Fig. 6�d� is
larger than expected.

Figure 7�e� also shows the expected scaling with I1
3, with

the two resistance estimates �the intercepts at I1=0� agreeing
to better than 1 ppt. The out-of-phase voltages in Fig. 7�f�
show a large scatter in discrete steps because they are at the
limit of the sensitivity of the instrument. To detect the in-
phase voltages �Fig. 7�e�� of 	300 mV the full-scale sensi-
tivity was set to 500 mV. The 0.06 ppt voltage steps men-
tioned earlier are then 30 �V, consistent with the limiting
resolution apparent in Fig. 7�f�. The variation with Idc in

FIG. 7. �a� and �e� In-phase 1� voltage vs 1� current, at constant frequenc
vs 1� current, at constant frequency, showing the expected I3 trend. �c� an
constant I1, showing the expected trend of a3+a4�2. �d� and �h� Out-of-ph

2
showing the expected trend of a5+a6� . �a�–�d� are for a suspended platinum wire
Figs. 7�g� and 7�h� shows the expected �2 scaling for both
in-phase and out-of-phase voltages. According to Table III,
the two curves of Fig. 7�h� should be identical. The errors are
due to the residual 	0.1° phase uncertainty between the
function generator and lock-in A after using lock-in B for
phase correction. This coupling of about 2 ppt of VX1

into VY1
corresponds to about 400 �V of uncertainty in the intercept
at �=0 in Fig. 7�h�. Again, for the 1� signals in particular,
the slopes with respect to �2 and/or I1

3 are more reliable than
the intercepts for determining thermal properties.

3. Measured transfer functions
Figure 9 compares the measured and theoretical electri-

cal transfer functions at 1� ,2�, and 3�. For each harmonic
the thermal conductivity was found by fitting the slope of the
appropriate signal �X1 ,Y2, and X3� with respect to ln �1. This
is a generalization of the “slope method” commonly used in
traditional 3� analysis.6 The other signal �Y1 ,X2, and Y3�
was not used in the fitting, and the measurements show large
deviations from the theoretical value at 2��−0.375� and es-
pecially at 1��−0.0625�. As with the suspended-wire system,

FIG. 6. �a� and �c� 2� voltage vs 1� current, at con-
stant frequency and constant current ratio �= Idc/ I1,
showing the expected I3 trend. �b� and �d� 2� voltage vs
current ratio �= Idc/ I1, at constant frequency and con-
stant I1, showing the expected linear trend. �a� and �b�
are for a suspended platinum wire at 300 K, while
�c� and �d� are for a line heater on a Pyrex substrate at
300 K.

wing the expected trend of a1I1+a2I1
3. �b� and �f� Out-of-phase 1� voltage

In-phase 1� voltage vs current ratio �= Idc/ I1, at constant frequency and
� voltage vs current ratio �= Idc/ I1, at constant frequency and constant I1,
y, sho
d �g�

ase 1

at 300 K, while �e�–�g� are for a line heater on a Pyrex substrate at 300 K.
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these deviations may be due to the phase disagreements be-
tween function generator and lock-in A at 2� and the ex-
treme sensitivity of Y1 to phase errors. For the traditional 3�
method, Cahill also reported that the slope method gives
more accurate results than using the magnitude of the con-
stant out-of-phase voltage.4

The resulting values of thermal conductivity agree with
each other to within 5% and are about 5%–10% higher than
a literature value of 1.10 W/mK.12 Again, the 1� data show
the largest scatter compared to the theoretical curve because
of the large offset voltage which is not canceled. The root-
mean-square deviation of the measurements in Fig. 9�a� from
the theoretical curve is only about 0.02 ppt rms. However,
this is enough to contribute significantly to the uncertainty
because the total range of the data only spans approximately
0.5 ppt �439.73–439.95�.

C. Current vs. voltage source

Figure 10 shows an example of measured thermal trans-
fer functions both with and without the correction for using a
voltage source instead of an ideal current source �Eq. �23��.
These data were taken by varying the additional resistors
�Fig. 2�b�� in the line-heater-on-substrate experiment de-
scribed above. Although only 3� data are used in this ex-
ample, the correction should be the same for any harmonic
and any type of thermal transfer function that can be de-
scribed using Table I. For each measurement, the total elec-
trical resistance was determined along with the apparent ther-
mal transfer function Zapparent calculated assuming an ideal
current source according to Table III. Using the measured
resistance ratio the thermal transfer function was corrected to

FIG. 8. Thermal transfer functions �average temperature rise per unit heat
input� as a function of heating frequency for a line heater on a substrate. The
transfer function is nondimensionalized using the product of the substrate’s
thermal conductivity ksubs and the heater length L. An arbitrary constant has
been subtracted from the in-phase transfer function.

TABLE III. 0� ,1� ,2�, and 3� electrical transfer functions defined by Eq.
constant const is the same for all terms.

Harmonic �n� In-phase electrical transfer function �Xn,LHOS�

0 0

1 1

2�Re0I1,rms
2 + ��2+ �1/2��Z�0�− �8�2+1�

ln �1+const

8�ksubsL
−

2 −3� /8ksubsL
3 �1/8� ksubsL��ln �1+ln 2+const�
Zcorrected using Eq. �23�. Finally, the average of these Zcorrected

was taken as the true thermal transfer function Ztrue.
When making this correction it is essential to correctly

account for the other portions of the electrical circuit which
are subject to the same thermal transfer function as the test
section. In this line-heater-on-substrate example, the voltage
taps of the four-point probe at the sample only span the cen-
tral 1000 �m of a 3000-�m-long heater line. However, the
remaining 2000 �m of the heater still respond thermally in a
similar way �neglecting end effects�, so we may think of the
effective sample as being 3000 �m long, with triple the re-
sistance as measured by the four-point probe. In effect, those
extra 2000 �m of current-carrying leads should not be
counted as stable ballast resistance but instead exhibit a 3�
behavior like the sample resistance. Therefore, in this ex-
ample, when making the correction of Eq. �23�, Rsample

=3Re0. This can also be understood by considering the
sample itself to be the 3000-�m-long line and simply multi-
plying the four-point probe voltages by a factor of 3. In the
case of a suspended wire, however, this adjustment for leads
should not be necessary, because any extra leads are likely to
be heat sunk and/or have much lower resistance than the test
section.

The raw and corrected Z of Fig. 10 are clearly in good
agreement with the analysis of Eq. �23�. The correction fac-
tor is unimportant when the sample resistance is negligible
compared to the total resistance of the circuit. On the other
hand, when the sample resistance is a significant fraction of
the total resistance, the correction becomes large. The latter
situation is undesirable because it is more sensitive to experi-
mental uncertainties in measuring Rb and in measuring the
unnecessarily small values of Xn,apparent, and Yn,apparent. If a
voltage source must be used with Rsample�Rb, it would be
better to either measure the current harmonics directly as
suggested in Eq. �18� or use an operational amplifier to
implement a true current source.3 In practice Rb is likely to
be at least 50 
 due to the output impedance of most voltage
sources, suggesting that the correction of Eq. �23� may be an
important consideration whenever Re0 is more than a few
Ohms, unless additional ballast resistance is used.

Finally, we note that even with the widespread practice
of common-mode subtraction it is still necessary to consider
the correction for using a voltage source instead of a current
source. This is evident from Eq. �22�. To implement the
common-mode subtraction a “series resistor” is introduced
into the circuit.4 This Rseries is chosen to have nearly the same
resistance as Re0, but with good heat sinking and/or a small
temperature coefficient so that its resistance is constant and
voltage drop is always simply I�t�Rseries. Lock-in A is then

for the special case of a line heater on a substrate �Eq. �33��. The unknown

�� Out-of-phase electrical transfer function �Yn,LHOS��1 ,���

��2� 1

2�Re0I1rms
2 + ��2+ �1/2��Z�0�−

ln �1+const

2�ksubsL
�

bsL
�−1/16ksubsL��1+8�2�

�� /4� ksubsL��3 ln �1+ln 2+3 const�
1/16ksubsL
�14�

�1 ,�

ln 2
8�ksu
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used to measure the difference in voltage drops across the
sample and the series resistor. This has the effect of cancel-
ing the first term in Eq. �22�, but it does not affect the �1
−Re0 / �Re0+Rb�� term multiplying Z. Therefore the correc-
tion of Eq. �23� is still necessary.

V. DISCUSSION AND RECOMMENDATIONS

A. Selection of optimal dc offset

As shown in Table I, the voltage signals at 1� and 2�
increase with increasing dc �increasing ��. However, this
also increases the common-mode voltage and the tempera-
ture variations within the sample, both of which may be un-
desirable. The optimum values of � for several different con-
straints are discussed below and summarized in Table IV.

1. Maximum signal for a limited temperature rise
The maximum temperature fluctuations of the sample

�max should generally be limited to a few Kelvins in order to
avoid ambiguity about the temperature of the measurement.
This limits the currents as well. To simplify the analysis we
assume that the experiment will include low frequencies, so
that Z��� and Z�2�� can be approximated with Z�0�. This
should be the maximum value of Z. In this case the largest
temperature rise is given by

�avg�t� = �Idc + I1 sin��1t��2Re0Z�0� �34�

FIG. 9. 1� ,2�, and 3� electrical transfer functions �voltage non-dimension
solution, and the points are experimental data for a Pyrex substrate at 300 K
given on the right and compared to a literature value �Ref. 12�.
leading to the constraint
I1 + Idc � Imax, �35�

where Imax=��max/Re0Z�0�.
From Table I and Eq. �14�, the 3� signals are not en-

hanced by Idc and so should always operate with �=0. The
2� voltages, on the other hand, are proportional to I1

2Idc.
Subject to Eq. �35�, the optimum currents are found to be

d by Eq. �14�� for a line heater on a substrate. The solid lines are the exact
values of thermal conductivity used to fit the data from each harmonic are

FIG. 10. Apparent and corrected thermal transfer functions �average tem-
perature rise per unit heat input�, according to Eq. �23�. The sample resis-
tance Rsample includes the full length of the line heater, which may be longer
than the portion spanned by the voltage probes. This correction applies to
any 1� ,2�, or 3� experiment that uses a voltage source but assumes a
alize
. The
current source for analysis and data processing.
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I1=2Imax/3 and Idc= Imax/3, that is, �=1/2. With these opti-
mizations, the 2� and 3� voltages have similar magnitudes
for the two transfer functions considered in Tables II and III.

The useful part of the 1� signals has terms proportional
to I1Idc

2 as well as I1
3. Optimization constrained by Eq. �35�

now leads to �=0 to maximize the in-phase signal �V1X� and
�=1+�5/8=1.791 to maximize the out-of-phase signal
�V1Y�. dc offsets are more important in the optimized V1Y

compared to the optimized V1X, because the �2 terms are
relatively more important in Y1 than in X1.

2. Maximum signal-to-background for a limited
temperature rise

Instead of maximizing the signal voltage itself, we may
wish to maximize the signal-to-background ratio. This makes
the best use of the gain and dynamic reserve of the lock-in
amplifier, which is especially important when the common-
mode subtraction is omitted, as in the present work. If the
voltages are not filtered at the lock-in, then the peak back-

TABLE IV. Optimal values of the current ratio �=
various harmonics. In some cases the optimum � dep
the lock-in amplifier. The temperature rise is assume
constraining the total current I1+ Idc� Imax. The expe

To maximize Filter dc at lock-in

Signal No filter

Signal Filter dc

Signal-to-background ratio No filter

Signal-to-background ratio Filter dc

TABLE V. Recommendations and comparison of 1� ,2�, and 3� methods

3� 2�

�Idc=0� �Idc�0�

Higher-harmonic de-
tection

Requires third Requires

Current source Use lock-in’s own
reference

Requires
�extra har

Stability of current
source

Not important Not impo

Sensitivity to phase
errors

Insensitive Insensitiv

Probes Z purely at one
frequency or combines
several

One frequency Combine

Frequency of voltage
signal compared to
heating

Higher �good for
thermally slow
systems�

Higher an

Precedents Well established
�Refs. 1–8�

New

Recommendation Most straightforward
method. Use when not
limited by fast system
frequencies or need
for third-harmonic
detection.

Niche ap
Use inste
when har
frequency
not frequ
built-in.
ground voltage for all harmonics is ImaxRe0, and the optimi-
zation for the maximum signal-to-background ratio is
equivalent to the optimization for the maximum signal just
discussed. However, if the dc component is filtered at the
lock-in amplifier, then the background voltage contains only
the Ohmic 1� component I1Re0. In this case the 2� signal-
to-background ratio is optimized at �=1 and is approxi-
mately 1.5 times larger than the optimized 3� signal-to-
background ratio.

For the 1� signal with dc filtering at the lock-in, the
optimization leads to �→�, i.e., a small ac sense current
combined with a much larger dc-heating current.

3. Other limitations
Sometimes the experiment will be constrained by the

current or voltage limits of the equipment. For example, the
current will be limited when a voltage source is used with
large ballast resistances to approximate a current source. In
other cases the background signal voltages may be so large

1 for best signal, or signal-to-background ratio, for
on whether the dc portion of the voltage is filtered at
be constrained to �avg��max, which is equivalent to
t is further assumed to include low frequencies.

At this harmonic

�in phase� 1� �out of phase� 2� 3�

0 1+�5/8=1.79. . . 1 /2 0

0 1+�5/8=1.79. . . 1 /2 0

0 1+�5/8=1.79. . . 1 /2 0

� � 1 0

ermal properties measurements.

1� 1� with dc offset
�Idc=0� �Idc�0�

d Not necessary Not necessary

fset
e�

Use lock-in’s own
reference

Requires dc offset �ex-
tra hardware�

Very important
�subtracting two large
numbers�

Very important
�subtracting two large
numbers�

Very sensitive Very sensitive

One frequency �plus
dc�

Combines two �plus
dc�

e Lower �good for
thermally fast
systems�

Lower and same

New ��1 used previously
�Ref. 9�

ion:
3�

e has
bler, but
tripler,

Use for systems with
very fast characteristic
frequencies. Use to
avoid implementing
higher-harmonic
detection. Be wary of
phase errors.

Use for systems with
very fast characteristic
frequencies. Use to
avoid implementing
higher-harmonic
detection. Be wary of
phase errors.
Idc/ I
ends
d to
rimen

1�
for th

secon

dc of
dwar
rtant

e

s two

d sam

plicat
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dwar
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as to saturate the input of the lock-in amplifier. These
situations are equivalent to the Imax constraint already dis-
cussed. For a current-limited power supply, Imax is the
equipment limitation, while for a voltage-limited power
supply, Imax=Vs,max/ �Re0+Rb�. For a saturated lock-in, Imax

=Vlock-in,max/Re0.

B. Relative merits of 1� ,2�, and 3� methods

Some of the strengths and weaknesses of these 1� ,2�,
and 3� methods are outlined in Table V. The table highlights
some important differences in the need for higher-harmonic
detection, dc offset, and stability of the current source.

The various methods also have important distinctions
when studying the frequency response of systems with very
slow, or very fast, characteristic thermal times. For example,
k and c of a single nanowire might be studied with the
suspended-wire technique. However, the longitudinal ther-
mal diffusion time is on the order of microseconds, corre-
sponding to frequencies on the order of 100 s of kilohertz. To
minimize the effects of parasitic inductances and capaci-
tances, it is desirable to conduct the experiment at as low a
frequency as possible. Table I shows that a 1� study with
�=0 probes the thermal response at twice the electrical de-
tection frequency, in contrast to a 3� study which probes the
thermal response at 2 /3 of the detection frequency. That is,
the thermal response at 100 kHz is detected electrically at 50
kHz using 1�, but at 150 kHz using 3�. This shows that 1�
may be advantageous for systems with very fast dynamics.
The argument is reversed for thermally very slow systems,
where 3� may be preferred.

Overall, the basic 3� method is still the best option for
most experiments. The 2� method may be preferred for cer-
tain lock-in amplifiers which have frequency doubling
built-in but not frequency tripling. 1� methods place greater
demands on the stability of the current supply, but eliminate
the need for higher-harmonic detection, and are an important
option when studying the dynamics of thermally fast sys-
tems. If a direct measurement of the thermal transfer function
is desired, without combining the thermal response at mul-
tiple frequencies, then 3� or 1� with �=0 should be used.

VI. SUMMARY

We have developed a general transfer function frame-
work �Table I� to describe any thermal system containing a
line heater that is also used to sense temperature. This in-
cludes the traditional 3� systems of a suspended wire �Fig.
4� and a line heater on a substrate �Fig. 9�, as well as experi-
ments combining a large dc-heating current with a small ac
sense current.9 The analysis naturally identifies 1� ,2�, and
3� variations which each have their own benefits in certain
situations �Table V�.

Considering the excellent accuracy and dynamic reserve
of modern lock-in amplifiers, it may no longer be necessary3

to use noise cancellation via a bridge or multiplying digital-
to-analog converter, making these experiments easier to
implement �Fig. 2�b��.

Finally, the error introduced by using a voltage source to

approximate a current source is shown to be equal to the
ratio of the sample resistance to the total circuit resistance. A
correction factor was derived �Eq. �23�� and verified
�Fig. 10�, allowing the usual current-source analyses to be
adapted to the more common situation of a voltage-source
experiment.
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APPENDIX A: TEMPERATURE PROFILE
IN A SUSPENDED WIRE

When a thin isolated wire is driven at a frequency much
faster than the longitudinal thermal diffusion time the result-
ing temperature rise is related to c.1,2,11 Similarly, the dc
temperature rise is related to k.13 A series solution for all
frequencies was recently given by Lu et al.3 Here we derive
a closed-form solution and give a lumped approximation.

The unsteady, one-dimensional heat conduction equation
neglecting convection and radiation losses, for a wire of

FIG. 11. Temperature profiles for a suspended wire driven by sinusoidal
heating at various frequencies. The solid lines are the in-phase temperature,
and the dashed lines are the out-of-phase temperature. The temperature rise
is nondimensionalized by the average value at dc, and the frequency is
nondimensionalized by the thermal diffusion time 
=4l2 /�. At low frequen-
cies the response is large, parabolic, and in phase, while at high frequencies
the response is smaller, flatter, and out of phase.
length 2l, is
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�c
��

�t
= k

�2�

�x2 +
Q�t�
2Sl

. �A1�

Here ��x , t� is the temperature rise at a position x along the
wire axis, and � is the density. The cross-sectional area of the
wire is S, which must be constant but need not be circular.
Assuming perfect thermal contact at x= ± l, the boundary
conditions are

���0,t�
�x

= 0,

��l,t� = 0. �A2�

Taking the Fourier transform with respect to time and

defining

�lump�t� and total heat capacity Clump connected to ��=0 by
W�x,�� = �� −
Q�

j�C
, �A3�

the governing equation becomes

j�

�
W =

�2W

�x2 �A4�

with transformed boundary conditions

�W�0,��
�x

= 0, W�l,�� = −
Q�

j�C
. �A5�

For heating given by Eq. �3�, Eqs. �A3�–�A5� can be solved
for �. After considerable manipulation, the temperature pro-

file in response to heating is found to be
��x,t� = � Q0

C�H
��− sin�q0�x + l��sinh�q0�x − l�� − sin�q0�x − l��sinh�q0�x + l��

cos�2q0l� + cosh�2q0l� �sin��Ht� + � Q0

C�H
�

	� cos�q0�x − l��cosh�q0�x + l�� + cos�q0�x + l��cosh�q0�x − l��
cos�2q0l� + cosh�2q0l�

− 1�cos��Ht� , �A6�
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where the thermal wave vector q0 is given by

q0 =��H

2�
. �A7�

Temperature profiles are depicted in Fig. 11 for various
frequencies. At low frequencies the temperature response is a
quasistatic parabola typical of a uniformly heated wire in
phase with the heating. At high frequencies the temperature
profile is nearly flat and out of phase with the heating, be-
cause there is very little time for heat diffusion compared to
the heating period. Interestingly, in the high-frequency case
the peak value of temperature occurs not at the center but
near the wire ends. This is also evident in the perturbation
solution given by Holland and Smith for a semi-infinite
wire.11 It can be understood by considering the 90° phase
difference between the heat source Q�t� and conduction
down the temperature gradient.

The spatially averaged temperature is given by

�avg�t� = � Q0

C�H
��
 sinh � − sin �

��cos � + cosh ���sin��Ht�

+ 
 sinh � + sin � − ��cosh � + cos ��
��cos � + cosh �� �cos��Ht�� ,

�A8�

where � is defined in Eq. �25�. This leads directly to the
transfer function given in Eq. �24�.

APPENDIX B: LUMPED APPROXIMATION
FOR SUSPENDED WIRE

Consider a lumped thermal mass with temperature
an external thermal resistance Rth,lump. The well-known trans-
fer function for this system is

ZSW,lump��H� = Rth,lump
 1 − j�H
lump

1 + ��H
lump�2� . �B1�

As shown in Fig. 3, ZSW,lump is a remarkably good approxi-
mation to ZSW over most frequencies as long as Rth,lump

=Rth /12, and 
lump=
 /10. These relations are justified math-
ematically by requiring ZSW,lump and ZSW to have the same
asymptotic behavior at low frequencies for both real and
imaginary parts. These constraints are not unique. For ex-
ample, if instead the correct magnitude of Zlump was desired
at both low and high frequencies, the constraints would be
Rth,lump=Rth /12 and 
lump=
 /12 �that is, Clump=C�.

An expression similar to Eq. �B1� was derived by Lu et
al.3 by retaining only the first term of a series expansion. In
particular, Eqs. �14� and �B1� lead to

�VX3

2 + VY3

2 =
�Re0

2 I1
3Rth

24�1 + �2�
/10�2
, �B2�

which is slightly more accurate than Eq. �19� of Ref. 3. That
equation has �4 /4 in place of 24 in the denominator �too
large by 1.47%� and �2 in place of 10 inside the radical �too
small by 1.30%�.
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