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thermal conductivities of both phases and the thermal contact resistances between fibers and also between fibers
and matrix. Due to the anisotropy of carbon fibers, one should know both their axial and radial thermal con-
ductivities. Contrary to the axial thermal conductivity of carbon fiber, there are not much work on the radial one.
The present work describes the characterization of the thermal conductivity of carbon fiber in the radial direction
using the 3 Q method with a constant current source. One key point is the use of de-ionized water around the
carbon fibers to enhance radial heat transfer. An appropriate thermal model is required in order to estimate the
radial thermal conductivity. Therefore, analytical 1D and 2D thermal models are developed using quadrupole
methods to describe heat transfer in the carbon fiber using periodic regime and are compared with a 2D nu-
merical model. It appeared that the use of a 1D heat transfer model induces some bias until 50.3% on the
estimation of the radial thermal conductivity showing that residual axial heat transfer still occurs. Therefore the
2D thermal model is more appropriate and is used with the experimental data to estimate the radial thermal
conductivity. In addition, a detailed sensitivity analysis of the unknown parameter is performed that allows to
find the best range of operating conditions especially the frequency range and the effect of the type of sur-
rounding material. Measurements are performed with PAN type carbon fiber (FT300B) of 6-8 pm diameter and
various lengths from 0.5 to 2.5 mm embedded in de-ionized water. Finally, radial thermal conductivity values are
shown to be about 10 times smaller than the axial one, revealing strong anisotropy of the studied carbon fiber.

The problem of the measurement of the radial thermal conductivity of a
carbon fiber is very difficult because of its small diameter typically less
than 10 pm.

In literature dealing with thermal characterization of carbon fiber,
several researches were focused on the measurement of the axial ther-
mal conductivity and very few on the radial one. Table 1 shows axial and
radial thermal conductivity values for several type of carbon fibers. For
the radial thermal conductivity, one have found works only from Huang
[2], Wang [3] and Liang [5] showing radial values mainly smaller than
the axial ones. In these works, various techniques are used. Huang [2]
has used molecular dynamic simulation to compute the radial conduc-
tivity k, of pitch based carbon fiber but no checking with measurement
was proposed. Wang [3] has used Raman method to measure k, but a
very large variation of measured values (from 0.11 to 8 Wm’lK’l) was
obtained according to the location of the laser beam, this was explained
by variation in the microstructure of the carbon fiber but it could also be
due to the too low sensitivity of the temperature measurement to k.

1. Introduction

Carbon fibers has reached a great place in many high-performance
industries such as aerospace or automotive structures [1]. This is
because carbon fiber has very specific characteristics such as high
strength, light weight which makes polymeric material reinforced with
carbon fiber good candidate to replace metallic parts for structural
components. As during their use composite material are subject to
thermal gradient, it is of interest to predict their effective thermal con-
ductivity. For this purpose, the knowledge of thermal property of carbon
fiber are required. A lot of research focused on the measurement of the
axial thermal conductivity of single carbon fiber mainly because it is the
primary thermal conductivity to be measured. However as mentioned by
Huang [2], carbon fibers are rather anisotropic material depending on
the type of precursors and on the thermal processing method. Therefore
the knowledge of radial thermal conductivity is quite often required.
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Nomenclature

c Heat capacity, Jkg 'K *

Lims Intensity of the current, A

f Frequency (f = 27w~ 1), Hz

kr Fiber radial therm. conduct., Wm K !
kw Water thermal conductivity, Wm K !
kz Fiber axial therm. conduct., Wm ™K~}
L Fiber length, m

R Radius of the fiber, m

Ry Elec. resistance of the fiber, Q

T Temperature, °C

T Average transf. temperature, °Cm

V3o Voltage at 3 Q, V

Xu, Sensitivity coefficient, °C

Greek letters

Qe Temp. coeff. of the resistance R, °C!
[0} Pulsation, rad.s-1

0 Transformed temperature,’Cm

p Density, kg.m ™3

o Standard deviation on k,, Wm 'K !

Liang [5] has used the 3 Q method and a 1D radial thermal model to
obtain k, but as we will see later a 2D model is more appropriate.
Therefore it appears that the correct measurement of radial thermal
conductivity of carbon fiber is still challenging.

In our work one have used the 3w method. The working principle of
this technique is the following. An additional metallic layer or the
specimen itself serves as a heater and at the same time as a temperature
sensor. As its electrical resistance varies linearly with temperature, its
average temperature over its length and thickness (or diameter) can be
measured through the measurement of voltage between its two ex-
tremities. The Joule heating is modulated thanks to an alternating cur-
rent with a pulsation ®. The current will create a heating with a volumic
power and therefore temperature fluctuation at 2w, this further leads to
voltage fluctuation across the metallic layer or specimen with both ® and
3w pulsations. Only the voltage at 3w noted V3, contains the information
of the average temperature of the sensor. It is therefore important to
reduce the contribution of the voltage at 1w by a specific device in the
setup such as a Wheatstone bridge or differential amplifiers. Then the
voltage V3, is used with an appropriate thermal model to estimate the
unknown such as the thermal conductivity of the sample. This 30
method was developed for thin film characterization (Cahill [9]) and
was successfully used to measure thermal conductivity of metallic micro
or nanowires (Lu [10], Xing [11], Ding [12]) or carbon fibers (Liu [13],
Mishra [6]). It is also possible to estimate simultaneously the axial
thermal conductivity and the volumic heat capacity of wires or carbon
fibers since these two parameters does not show correlation within the
frequency range used during the 30 measurement [6], typically from 1
to 1000 Hz.

The objective of this work is to develop a method to provide radial
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thermal conductivity of carbon fiber. First the proposed measurement
principle is presented then analytical thermal models are developed in
order to compute V3, values useful for the k, estimation procedure. First
a 1D thermal model and then a 2D one are developed using analytical
methods and both are compared with a 2D numerical model (finite el-
ements). The sensitivity analysis versus frequency shows the interest of
using de-ionized water for radial thermal conductivity measurement.
Finally, k, measurements are performed with three different carbon fi-
bers of PAN type.

2. Radial thermal conductivity measurement principle

Fig. 1 shows the sample holder with the carbon fiber to be charac-
terized radially. The carbon fiber of a few millimeter length (typically
between 0.5 and 2 mm) is connected to two copper blocks using silver
paste as for previous axial thermal conductivity measurement (Mishra
[6]). However, instead of placing the sample holder under vacuum (for
axial characterization), it is immersed in deionized water, the aim being
the increase of the radial thermal gradient inside the carbon fiber and
also the decrease of the axial one. Then as for classical 3 Q measurement
a modulated current is applied between the two extremities of the
sample that are connected to two differential amplifiers then to a lock-in
amplifier. The interest of the use of deionized water will be detailed in
section 3.3 dedicated to sensitivity analysis. Next section will describe
the thermal models needed to estimate k, from the knowledge of the
amplitude of the average temperature of the carbon fiber and we will
show the relationship between the latter and the measured voltage Vs,,.

3. Thermal models
3.1. 1D analytical model

This section provides an analytical 1D radial thermal model for the
self-heating of carbon fiber surrounded by de-ionized water. Fig. 2
shows the geometry that has been considered. A volumic power P due to
Joule effect is located within the carbon fiber and the surrounding
material (water) is considered as a semi —infinite medium. In our work P
can be assumed constant since the current is prescribed and the elec-
trical resistance of the carbon fiber has a very small temperature coef-
ficient. For the other cases, Ding [12] has proposed a criterion to check if
the hypothesis P constant can be considered.

Therefore, the corresponding radial heat equations for carbon fiber
and deionized water can be expressed as follow:

Carbon fiber L
«— De-ionized water

Copper block

1=y coS(X) ey

= L » Towards differential amplifiers and lock—in amplifier

Fig. 1. Carbon fiber radial thermal conductivity measurement principle using
30 method.

Table 1

Radial (k;), axial (k;) thermal conductivities and volumetric heat capacity (pC) of various types of carbon fibers from the literature (RT = room temperature).
Carbon Fiber Commercial Ref. k Wm 'K ! k, Wm'K™! pC Im~>K! Temperature K Method Ref.
Lignin - 0.11-8 1.4-2.15 - 77 - RT FET-Raman + TET tech. [3]1
Pitch YSH-60A 12 - - RT MD simulation [2]
Pitch - - 490 - RT T-type [4]
PAN T650 1.5 13.7 1.97 10° RT 30 [5]
PAN FT300B - 10.47 1.37 10° RT 3w [6]
PAN FT300B 8.5 RT Hot guarded plate [7]
Rayon TC2 - 5-12.5 - 850-1800 Periodic heating [8]
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Carbon
fiber -

Deionized
water

Fig. 2. Geometry for the 1D thermal model with a carbon fiber surrounded by
de-ionized water.

T 10T or

k’(FJF?E)_””E: -f W
o°T, 10T, oT,,

kw< 0 +; ar ) *ﬂwcww—o (2)

where T and T, are the temperature inside respectively the carbon fiber
and the water, pc is the volumetric heat capacity of carbon fiber, k,, and
pwCw are the thermal conductivity and the volumetric heat capacity of
water.
The internal and external boundary conditions and initial conditions
are:
or

T,
atr=R : T=T, and k,— :kwa Y
or |, or

atr =0 : Tpe ;at r—c0: T, =0

(perfect contact)
R

3
att=0:T=T,=0

To solve the system of equations (1)-(3) for a steady periodic regime,
one have used Fourier’s transformation introducing complex number j:
T = Te* for the temperature and P = Pe?”* for the volumic power.
Therefore the partial differential equations (1) and (2) are transformed
into second order differential equations with a source term that can be
solved easily. The corresponding solution for the average temperature
within the carbon fiber is finally:

= P 2

T=——|1-—"1 4
afk,{ ealR} )

where:

_ ko Ko(aaR)  Lh(aiR)

+

 kwaaKi(aiR) I (ayR)

1+j 1+j k. k
a= =L =y [ = [ ande
o1 b, wpc Wp,,Cy
%)

In Eq. (5), the quantities Iy,I; are modified Bessel functions of first
kind and K,,K; modified Bessel functions of second kind.
The relationship between the measured rms value of the voltage Vs,

and the amplitude H?H of the average temperature of the fiber T (Eq. (4)

is given by:

Vioms = ImsRoQ,

?H (6)

where the product Rya,

7‘” comes from the effect of the temperature on

the electrical resistance Ry of the carbon fiber (Rx = Ro(1 + @.T)). The
temperature coefficient a, = 2.4 10~% K1 of the PAN/FT300B carbon
fiber is more than 10 times smaller than the ones of metallic wires.

3.2. 2D analytical model

In fact as show on Fig. 1, heat conduction might be 2D with not only
radial but also with axial heat transfer within the carbon fiber. Therefore
we have also developed a 2D axisymmetric thermal model as shown on
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Fig. 3 describing axial and also radial heat transfer within the whole
fiber surrounded by de-ionized water. In order to take into account the
anisotropy of the fiber one have considered two thermal conductivity
components the radial one k, and also the axial one k,. As previously a
Joule heating with a volumic power P is within the carbon fiber and the
deionized water is considered as a semi-infinite medium. In addition for
the 2D model, a temperature (T = 0) is prescribed on both sides at z =
0 and z = 2L.

The governing heat conduction equations inside the fiber and the de-
ionized water have the following form:

o'T 10T T  oT
R, — i
" (6r2 rdr ) T a2 P )
P AL PR PR (O ®
"\ orr " r dr o P T

where T and Ty are the temperatures inside the fiber and water
respectively and k;, is the axial thermal conductivity of the fiber.
The internal and external boundaries conditions are:

or aT,
atr=R: T=T,andk—| =k,——| (perfectcontact)
or |, or |,
atr=0: Tpye;atr=oc0: T, =0 9
or dT,
atz=0:T=T,=0atz=L : —= =0
0z 0z

To solve this problem, one have used a double transformation of the
temperature T (and also for T,). First a complex Fourier transformation
was used: T = Te2" for the temperature and P = Pe?** for the volumic
power. Secondly we applied the following finite sine transformation
defined as [14]:

L
- / T sin(p,2)dz (10)
0

The appropriate transformation is of sinus type because of the type of
boundary condition (prescribed temperature) on both sides of z-axis
[15].

With these two transformations, the temperature of the fiber in the
transform space can be expressed as:

1
~ ﬁn:(nJr—)z andn=0,1,2...00
- P 2L
0:0110(}’”}”) +‘m with (11)
nlrY k, 2pcj
= k—“(ai + /) witha? = %

where 0 is the temperature transformed twice and I, represents a
modified Bessel function. In Eq. (11), a; is a term which will be
computed further using boundary conditions.

Then after a first integration of 6 over the radius r from 0 to R, one
have used a quadrupole formulation [1] to take into account the bilayer
shown in Fig. 3:

; (; . oL Axis of symmetry
Eﬂkr kz
Carbon fiber

T=0

o0

Fig. 3. Geometry for the 2D thermal model with a carbon fiber surrounded by
de-ionized water.
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2]-[e 8

where A, B, C, D and (~2 are defined as:

Ok

o (12)

A=1

_ L(r.R) ]
27k, Ly, Rl (v,R)  7Lk.R*/?

C = aR*Lk, V2B, 13)

_ Io(r.R)r.B.R
21 (y,R)

0 = nR’LP

In Eq. (12), §R and E)R are the temperature and heat flux located at r
= R in the transform space and are linked by the following relationship
since water is considered as a semi-infinite medium [14]:

B = 7oy with Zu, — % 14
where:

Von = @, + B,

2 = 2p,,Cuj® 15)

"k

Finally, using the relationship for the inverse of the finite sine
transformation which introduces the solution as a serie from n = 0 to co
and by space integration along the axis of the fiber from 0 to L, one can
obtain the complex value of the average temperature of the fiber:

= 2
T—=

— © — 16
2 2m0p, (16

= (AZo+B\~
withﬂz(£>

CZs,+D

where Ip,I; are modified Bessel functions of first kind and Ko, K;
modified Bessel functions of second kind.
The relationship between the measured rms value of the voltage Vs,

and the amplitude HTH of the average temperature of the fiber T (Eq.

(16)) is similar to the one given by Eq. (6).

One should not that the 2D problem represented by Eq. (12) can be
seen (see Fig. 4) as an equivalent electrical network using the following
two impedances defined by Ref. [14]:

b, b

D_
7z == and Z; = 5 a7)

where in the bottom line of Eq. (12) the quantities C, D and é have been
divided by f, since the determinant AD-BC of the matrix is not equal to 1
(AD-BC = fp).

4. Comparison between analytical 1D, 2D models and a 2D
numerical model

The values of voltage V3, predicted with the two previous 1D and 2D

Q/Bn [W_-n'l] 2, [KW-1] $p[W.m]
| S A
5 -1 Zo [KW™T
O[Km] | Zy[KW™ 8, K m] [ 1

Fig. 4. Representation of the 2D thermal model using impedances.
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thermal models are now compared with a 2D numerical model
computed with finite element (COMSOL software). For this simulation,
one have considered a modulated current of 1 mA amplitude crossing a
carbon fiber of 1.7 mm length, 7 pm diameter and of 900 Q electrical
resistance with a a, = 2.4 10~* K~ 'temperature coefficient. The thermal
properties are axial thermal conductivity of 10.47 Wm 'K ~! and volu-
mic heat capacity of 3.9 10° Jm’3K’1, both are coming from Mishra [6].
In addition a radial thermal conductivity of 0.8 Wm™'K~! was chosen.

Results in Fig. 5 shows a good agreement between the 2D analytical
and 2D numerical models (less than 0.1% discrepancy). One can notice
that the 1D analytical thermal model does not fit the 2D ones especially
at low frequency between 1 and 100 Hz, the discrepancy is about 8% at
1 Hz. As the 1D model was used in a previous work [5] one has tried to
estimate the bias when estimating the radial thermal conductivity using
only the 1D thermal model. For this purpose one have simulated data
(V34 vs f) using the 2D analytical model and a value of radial thermal
conductivity was estimated using the 1D analytical model. The estima-
tion of k, was performed under MATLAB software using simplex method.
The results are presented in Fig. 6 for k, = 1 Wm™ 'K 'and k, = 10
Wm 'K 'and in Table 2 with various sets of k, and k, values.

Fig. 5 shows the agreement between calculated V3, value using 1D
analytical model for the estimation of k, value and simulated data V3,
using the 2D analytical model. The agreement between V3, values after
the estimation process is correct and the bias ey p is very large
(50.32%). Table 2 shows more values of the bias ey1p for various sets of
kr and k, values. For small values of k;, the bias ey,1p is quite small which
is probably due to high value of the radial thermal gradient compared to
the axial one. For higher values of k. (which will be the case in our
experimental results shown in section 7) the bias ey;p is large. This
suggest that despite the use of water around the fiber in order to increase
radial heat transfer, there exists still some axial heat transfer responsible
for the observed bias ex;p obtained using only a 1D model. As a
conclusion of this section, in order to estimate k;, value, it is much more
appropriate to use the 2D model (Eq. (16)) than the 1D one.

5. Sensitivity analysis

The measurement of the radial thermal conductivity is not easy and it
is important to perform a sensitivity analysis which is very useful to
choose the best operating conditions in order to perform parameter
estimation with the lowest uncertainty. Sensitivity coefficients of the
measured temperature T with respect to the parameter u, (in our case k,
or k;) are defined by:

70T .
U with u, = k,, k. (18)

x oT X
or =
k Tpax Oty ‘

)= u,,—aup i

The derivative dT/dup, was computed using the 2D analytical model

0.14 T
- = = Analytical 1D model
012, |ee=- Analytical 2D model
Al = = =Numerical 2D model
0.1 "
N
S“\\\
E 0.08 “s\\
= “
.2 0.067 N
= £
N
-
0.04 r N,
.
e
~
\'\
0.02 ~—
0
0 1 ) 4

10° 10° 10
Frequency [Hz|

Fig. 5. Voltage V3, versus frequency for the analytical 1D and 2D models and
comparison with a 2D numerical model computed with finite elements.
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0.16 ¢ S ——
} — V1V, 1D model
t Vi, Simulated 2D model|

0.14

0.12
~Z 0.1 er1p :50.32 %
. g-‘f 0.08

0.06

0.04

0.02
10" 10" 10° 10°
Frequency |Hz

Fig. 6. Computation of the bias ex;p on the estimated radial conductivity by
using the 1D analytical model (simulated data using the 2D analytical model
with k, = 10 Wm 'K land k, = 1 Wm K™ 1).

Table 2
Bias on the estimation of k, using the 1D analytical model, data are simulated
using the 2D analytical model and various set of k, and k, values.

k Wm 'K ! k, Wm 'K ~! K,/Ky €kriD %
0.1 5 50 0.48
0.2 10 50 1.93
0.5 5 10 8.03
1.0 10 10 50.32

described previously and the geometry and thermal properties values
considered at the beginning of previous section.

Fig. 7 is very interesting since it compares the sensitivities to k, and
to k. In addition, we have added the value of the sensitivity to k; during
axial thermal conductivity of fiber (under vaccum) as done by Mishra
[6], the latter is indicated with the notation “with k,, = 0” corresponding
to an adiabatic condition. One can show that the use of deionized water
around the carbon fiber greatly reduces the sensitivity to k, almost to
0 and increases the one to k, which was expected. However, the sensi-
tivity to k; still remains modest (Xi, = 0.29 °C) which will induce larger
uncertainty on k, compared to the one for k, estimation under vacuum
[6]. One can also notice that the sensitivity to k. does not depend much
on the frequency within the 1-1000 Hz range.

A question which arises is whether we can further increase the
sensitivity to k, by replacing water with another fluid or material around
the carbon fiber? Fig. 8 shows the effect of thermal conductivity of the

%107

4
- ==Xk,
--=-Xk.
3l Xk, with k, = 0[4]|]

Xk,
o

10" 10° 10°
Frequency [Hz|

Fig. 7. Sensitivity analysis of the 3w voltage to the radial and axial thermal
conductivities.
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0.8
0.6 — k= 0.059
—k, = 0.59
ko = 5.9
Z —_—k, =59
$F04 =99 |

107 10° 10
Frequency [Hz|

Fig. 8. Effect of the thermal conductivity k,, of the surrounding material on the
sensitivity coefficient of the fiber temperature with respect to its radial thermal
conductivity k;.

surrounding material on the sensitivity coefficient of the fiber temper-
ature with respect to k. There is clearly a gain with a 6 times increase of
the sensitivity coefficient to k, for a 10 times increase of the thermal
conductivity k,, of the surrounding material (from 0.59 to 5.9 W m™!
K™1). However, practically it is difficult to find a fluid or a material with
such properties while ensuring good thermal contact with the carbon
fiber. By cooling the water one could obtain ice with a much higher
thermal conductivity (2.1 Wm 'K ! at 0 °C) than the one of water but
the specific heat capacity would drop (from 4.22 kJkg 'K~! at room
temperature to 2.06 kJ kg’lK’1 at 0 °C) which would not bring much
gain in terms of sensitivity to k.. Indeed the relevant quantity for
choosing a surrounding medium providing a heat sink effect is its
thermal effusivity which is the square root of the ky,py,c, product.
Therefore we haven’t found yet better than de-ionized water.

6. Experimental setup, samples and uncertainty analysis
6.1. Experimental setup

In the 30 method, the average temperature of the sensor or of the
sample itself is measured thanks to the variation of its electrical resis-
tance versus temperature. However this variation is small and a specific
electronic device is required to isolate this contribution before
enhancing the signal using a lock-in amplifier (LIA). For this purpose,
the electronic device can be a Wheatstone bridge or a circuit with dif-
ferential amplifiers. The Wheatstone bridge works fine for sensor or
sample of low electrical resistance (less than 400Q) not so far from the
input impedance of LIA [6]. For higher electrical resistance the use of
differential amplifiers is required which corresponds to our case, the
electrical resistance of PAN type carbon fiber of 1.5 mm length being
about 900 Q. In our device as shown in Fig. 9, two differential amplifiers

Sync

yai

)

A B Lock-in-amplifier

‘ AC Current Source

|-~

Fig. 9. Schematic electrical setup for 3w voltage measurement.
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(AD624) are used to get the difference of voltage between the resistance
Ry of the sample and the one Ry of a reference resistance (adjustable
until 5 kQ). The adjustment of the latter is performed with a 1o pulsation
using the LIA (Ametek 7265) and then V3® measurement which con-
tains the temperature information is performed with a 3w pulsation.

The sample holder is built using two small sections of an FR4 elec-
tronic circuit board covered with 15 pm of copper which are glued on a
polycarbonate block (Fig. 10). The ends of the carbon fiber are held on
the copper parts with silver paste insuring the required prescribed
temperature boundary condition at z = 0 and z = 2 L (see Eq. (9)), then
the whole is immersed in deionized water.

The electrical resistance of the fiber is measured before and after
been submerged to ensure there is no electrical leakage due to any
contamination of the deionized water. Table 3 presents the geometric
and electrical characteristics of the three carbon fibers used for per-
forming the experiments. These values are presented as a range in order
to perform the uncertainty analysis on k, estimation (see next section).

The V3, voltage measurements are carried out over a wide frequency
range (1-800 Hz) with approximately 42 frequency values with more-
over a few higher frequencies (around 5 kHz) to obtain the asymptotic
values.

6.2. Uncertainty analysis

There are many sources of uncertainty when measuring k.. One can
cite the quantities such as length, diameter of fibers, electric current and
voltage as well as the thermal parameters assumed to be known k;, pc ...
The principle of calculating the overall uncertainty on the estimated
radial thermal conductivity k; is issued from previous reference books
dealing with parameter estimation [16,17]. The absolute uncertainties
1.96 oy, on the estimated k, with 95% confidence bands comes from the
computation of the matrix of variance-covariance Spnq at the final
iteration as proposed by Milosevic [18] and defined by:

-1
Vo)

2, + (am,, 3) 19

V3w 2 amP ( )

where X is the sensitivity coefficient matrix, W is the variance covari-
ance matrix, oys, is the standard deviation of the measured voltage Vs,
Om, is the standard deviation of the known parameters m,. The values of
the standard deviation oy, are found from the relative error ey, on the
known parameters listed in Table 4 (emp = 1.96 01p/my).

Finally, the typically value of the error for the estimated value of
radial thermal conductivity is 24%. This error is higher than the one
obtained for the axial thermal conductivity (about 8.1% [6]) because
heat transfer is studied along a much shorter distance which is measured
with lower accuracy.

Spnar = [XTWX] " with W =

7. Experimental results

The estimation of the radial thermal conductivity was carried out
using the 2D analytical thermal model validated previously. The
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Table 3
Characteristics of the PAN type carbon fibers FT300B used for k, measurements.

Carbon fiber Diameter/pm Length/mm Electr. resistance Ro/Q
Sample 1 6.39-8.52 1.68-1.71 1043.2
Sample 2 7.66-9.51 1.73-1.74 867.6
Sample 3 6.33-8.59 0.74 494.8

Table 4

Known parameters and their relative uncertainties used for uncertainty calcu-
lation over k;,

Parameters m, Relative error em,/%

Current I, 0.1
Electrical resistivity Roy 0.2
Temp. coeff. of resistance a, 3

Length of the carbon fiber L 9

Radius of the carbon fiber R 13
Axial thermal conductivity of the carbon fiber k, 8.1
Volumic heat capacity of the carbon fiber pc 4.9

estimation procedure has consisted in minimizing the sum of square of
the difference between computed and measured voltage V3, and this
using simplex method. The value of k, and pc for the studied fiber were
considered known (coming from a previous work [6]).

Fig. 11a shows a good agreement between the measured and calcu-
lated values of the voltage V3, after the estimation of the radial thermal
conductivity k.. To improve the estimation, we have in fact considered
from an experimental point of view the differences between measured
voltages and their asymptotic value obtained at high frequencies around
5 kHz, the asymptotic value should in theory be zero. Indeed, it was
found that from one test to another this asymptotic value was not always
equal to zero, indicating the presence of a slight electronic “offset".

Fig. 11b shows the residuals between measured and computed Vs,
values after the estimation of k. It appears that the maximum value of
the residuals is about 0.06 mV for a maximum voltage of 2.3 mV which
in relative magnitude gives residuals smaller than 2.6% which remains
low.

Table 5 shows the results for three different PAN/FT300B type car-
bon fibers with similar geometric characteristics. The estimated values
of the radial thermal conductivity ranges from 0.4 to 0.8 Wm 'K}, they
are more than 10 times lower than the axial value equal to 10.5
Wm 1K ! of the same batch of fiber [6], this shows the highly aniso-
tropic structure of such PAN type carbon fibers. These results are in
agreement with discussion in paper from Hind [19] where a thermal
conductivity ratio from 5 to 10 is mentioned for PAN type carbon fibers.

8. Effect of thermal contact resistance and of the convection in
water

The numerical and analytical models used above works under two
hypotheses: 1) perfect thermal contact between carbon fiber and copper

Fig. 10. Sample holder and zoom on the carbon fiber implementation.
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Fig. 11. (a) Measured and computed V3, voltages after the estimation of the
radial thermal conductivity (sample#1, FT300B carbon fiber) (b)
V3w residuals.

Table 5

Measured radial thermal conductivity k. for a PAN type carbon fiber FT300B.
Radial thermal conductivity Sample 1 Sample 2 Sample 3
ky, Wm'K™! 0.549 0.435/0.652" 0.801

2 Two measurements have been performed on the same carbon fiber.

blocks and 2) negligible convection losses in water.

For the first hypothesis, one have measured the value of the thermal
contact resistance between the copper block/carbon fiber connection in
a previous investigation giving a value of 8.83 10" m? K W~! (Mishra
et al. [6]). This value was taken into account in a numerical model with
the aim of estimating the influence of this thermal resistance on the final
value of the radial thermal conductivity. The induced bias on the radial
thermal conductivity was finally about of 6.4% with is less that the
relative uncertainty on k, measurement.

For the second hypothesis, two studies have been carried out with
the aim of estimating the influence of convection under steady state
conditions and then subject to harmonic heating.

For this purpose, we have performed finite element calculations
using Comsol software. Two different types of simulations were carried
out in each study, the first under the influence of (only) conduction in
water and the second subject to the convective phenomenon in water.
The conduction was performed using the “Heat transfer in solids”
module of Comsol and the convection using the “Conjugate heat transfer
fluid-solid” module which allows the interaction between the energy
equation and the Navier-Stokes equations. The harmonic and convective
study was performed using transient regime and very small time steps,
each time period being discretized with 10 time steps.
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Table 6
Average temperature of the carbon fiber with a) only conduction and b) with
convection in water.

f Hz TCnnvection TClmductiun e%
K K

Steady state 2.17023 2.20244 1.46

1 3.73542 3.74401 0.23

5 2.99306 2.99927 0.21

10 2.66869 2.67273 0.15

Tconvection — T conduction

with e = 100 x

Tconduction

As a first step, the steady state study showed a difference in the mean
temperature of the carbon fiber. With convection inside the water, this
mean temperature is about 1.46% lower than the one obtained with only
conduction (see Table 6 below). As in section 4, a bias on the V3, voltage
with a few percentage might induce a substantial bias in the estimated
radial thermal conductivity. Thus we have performed the harmonic
study which is closer to our experimental conditions for k. measurement.
As shown in Table 6, the discrepancy between the average temperature
of the fiber between conduction and convection in water is much smaller
typically less than 0.23% for a frequency higher than 1 Hz. At this level
the induced bias on the k, measurement is small. Indeed, by changing the
average temperature of the carbon fiber by 0.23% we have obtained a k,
variation about 4% which is smaller than the computed relative uncer-
tainty of k, measurement (24% see section 6.2). In addition this 0.23%
change of temperature which would involve a 0.23% change of the V3,
voltage is not detectable with the lock in amplifier as for voltage about 1
mV, the accuracy on voltage measurement is less than 0.3% as
mentioned in the datasheet of our lock-in Amplifier [20]).

Also in Table 6 we can see that the convective effect leads always to
smaller temperatures as expected. In addition, as the frequency in-
creases, the bias e on average temperatures decays bringing the mean
temperature values of the fiber subject to conduction and convection
closer to each other.

One have also computed the value of Rayleigh number for the steady
state case. The Rayleigh number is less than 1 1 which is much lower
that the threshold value of 1100 under which we can neglect convective
effect [21]

Conclusions

An analytical 2D thermal model in steady periodic regime has been
developed and validated in order to estimate the radial thermal con-
ductivity of carbon fiber. It appeared that the use of a 1D thermal model
as mentione’ in the work of Liang’s work [5] could lead to bias on k.
value of the order of 50%. In addition, the presence of water around the
carbon fiber has been shown to induce much higher sensitivity of the
measured Vs, voltage with respect to the radial conductivity k. while
decreasing the one with respect to the axial conductivity k.

Three different samples of PAN type carbon fibers (FT300B) with a
diamet r between 7.4 and 8.6 pm were characterized and the estimated
radial thermal conductivity values were found between 0.43 and 0.80
wm K.

The induced bias on the radial thermal conductivity produced by the
thermal contact resistance bewen the copper block / carbon fiber
connection was finally about of 6.4% with is less that the relative un-
certainty on k, measurement.

Convection could generate some variations in the mean temperature
of the carbon fiber. Under steady state convection it was found around
1.4%, however one have performed also harmonic study which is closer
to our experimental conditions for k, measurement. In this case, the
discrepancy on the average temperature of the fiber between conduction
and convection in water is much smaller typically less than 0.23% which
would involve a 0.23% change of the V3, voltage for a frequency higher
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than 1Hz and finally a small bias (4%) on the measured k, thermal
conductivity.

Knowing the axial and radial of thermal conductivities of anisotropic
carbon fibers of PAN type, future work will concern the measurement of
the thermal contact resistance (TCR) between two carbon fibers. This
would allow to provide all small scale information in order to predict or
calculate the effective conductivity of polymer matrix composites rein-
forced with carbon fiber, but th easurement of fiber / fiber TCR is
another challenge.
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