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A B S T R A C T   

The prediction of the effective thermal conductivity of composites filled with carbon fibers requires the 
knowledge of the microstructure and composition of the composite, the orientation of nonisometric filler, the 
thermal conductivities of both phases and the thermal contact resistances between fibers and also between fibers 
and matrix. Due to the anisotropy of carbon fibers, one should know both their axial and radial thermal con
ductivities. Contrary to the axial thermal conductivity of carbon fiber, there are not much work on the radial one. 
The present work describes the characterization of the thermal conductivity of carbon fiber in the radial direction 
using the 3 Ω method with a constant current source. One key point is the use of de-ionized water around the 
carbon fibers to enhance radial heat transfer. An appropriate thermal model is required in order to estimate the 
radial thermal conductivity. Therefore, analytical 1D and 2D thermal models are developed using quadrupole 
methods to describe heat transfer in the carbon fiber using periodic regime and are compared with a 2D nu
merical model. It appeared that the use of a 1D heat transfer model induces some bias until 50.3% on the 
estimation of the radial thermal conductivity showing that residual axial heat transfer still occurs. Therefore the 
2D thermal model is more appropriate and is used with the experimental data to estimate the radial thermal 
conductivity. In addition, a detailed sensitivity analysis of the unknown parameter is performed that allows to 
find the best range of operating conditions especially the frequency range and the effect of the type of sur
rounding material. Measurements are performed with PAN type carbon fiber (FT300B) of 6–8 μm diameter and 
various lengths from 0.5 to 2.5 mm embedded in de-ionized water. Finally, radial thermal conductivity values are 
shown to be about 10 times smaller than the axial one, revealing strong anisotropy of the studied carbon fiber.   

1. Introduction 

Carbon fibers has reached a great place in many high-performance 
industries such as aerospace or automotive structures [1]. This is 
because carbon fiber has very specific characteristics such as high 
strength, light weight which makes polymeric material reinforced with 
carbon fiber good candidate to replace metallic parts for structural 
components. As during their use composite material are subject to 
thermal gradient, it is of interest to predict their effective thermal con
ductivity. For this purpose, the knowledge of thermal property of carbon 
fiber are required. A lot of research focused on the measurement of the 
axial thermal conductivity of single carbon fiber mainly because it is the 
primary thermal conductivity to be measured. However as mentioned by 
Huang [2], carbon fibers are rather anisotropic material depending on 
the type of precursors and on the thermal processing method. Therefore 
the knowledge of radial thermal conductivity is quite often required. 

The problem of the measurement of the radial thermal conductivity of a 
carbon fiber is very difficult because of its small diameter typically less 
than 10 μm. 

In literature dealing with thermal characterization of carbon fiber, 
several researches were focused on the measurement of the axial ther
mal conductivity and very few on the radial one. Table 1 shows axial and 
radial thermal conductivity values for several type of carbon fibers. For 
the radial thermal conductivity, one have found works only from Huang 
[2], Wang [3] and Liang [5] showing radial values mainly smaller than 
the axial ones. In these works, various techniques are used. Huang [2] 
has used molecular dynamic simulation to compute the radial conduc
tivity kr of pitch based carbon fiber but no checking with measurement 
was proposed. Wang [3] has used Raman method to measure kr but a 
very large variation of measured values (from 0.11 to 8 Wm− 1K− 1) was 
obtained according to the location of the laser beam, this was explained 
by variation in the microstructure of the carbon fiber but it could also be 
due to the too low sensitivity of the temperature measurement to kr. 
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Liang [5] has used the 3 Ω method and a 1D radial thermal model to 
obtain kr but as we will see later a 2D model is more appropriate. 
Therefore it appears that the correct measurement of radial thermal 
conductivity of carbon fiber is still challenging. 

In our work one have used the 3ω method. The working principle of 
this technique is the following. An additional metallic layer or the 
specimen itself serves as a heater and at the same time as a temperature 
sensor. As its electrical resistance varies linearly with temperature, its 
average temperature over its length and thickness (or diameter) can be 
measured through the measurement of voltage between its two ex
tremities. The Joule heating is modulated thanks to an alternating cur
rent with a pulsation ω. The current will create a heating with a volumic 
power and therefore temperature fluctuation at 2ω, this further leads to 
voltage fluctuation across the metallic layer or specimen with both ω and 
3ω pulsations. Only the voltage at 3ω noted V3ω contains the information 
of the average temperature of the sensor. It is therefore important to 
reduce the contribution of the voltage at 1ω by a specific device in the 
setup such as a Wheatstone bridge or differential amplifiers. Then the 
voltage V3ω is used with an appropriate thermal model to estimate the 
unknown such as the thermal conductivity of the sample. This 3ω 
method was developed for thin film characterization (Cahill [9]) and 
was successfully used to measure thermal conductivity of metallic micro 
or nanowires (Lu [10], Xing [11], Ding [12]) or carbon fibers (Liu [13], 
Mishra [6]). It is also possible to estimate simultaneously the axial 
thermal conductivity and the volumic heat capacity of wires or carbon 
fibers since these two parameters does not show correlation within the 
frequency range used during the 3ω measurement [6], typically from 1 
to 1000 Hz. 

The objective of this work is to develop a method to provide radial 

thermal conductivity of carbon fiber. First the proposed measurement 
principle is presented then analytical thermal models are developed in 
order to compute V3ω values useful for the kr estimation procedure. First 
a 1D thermal model and then a 2D one are developed using analytical 
methods and both are compared with a 2D numerical model (finite el
ements). The sensitivity analysis versus frequency shows the interest of 
using de-ionized water for radial thermal conductivity measurement. 
Finally, kr measurements are performed with three different carbon fi
bers of PAN type. 

2. Radial thermal conductivity measurement principle 

Fig. 1 shows the sample holder with the carbon fiber to be charac
terized radially. The carbon fiber of a few millimeter length (typically 
between 0.5 and 2 mm) is connected to two copper blocks using silver 
paste as for previous axial thermal conductivity measurement (Mishra 
[6]). However, instead of placing the sample holder under vacuum (for 
axial characterization), it is immersed in deionized water, the aim being 
the increase of the radial thermal gradient inside the carbon fiber and 
also the decrease of the axial one. Then as for classical 3 Ω measurement 
a modulated current is applied between the two extremities of the 
sample that are connected to two differential amplifiers then to a lock-in 
amplifier. The interest of the use of deionized water will be detailed in 
section 3.3 dedicated to sensitivity analysis. Next section will describe 
the thermal models needed to estimate kr from the knowledge of the 
amplitude of the average temperature of the carbon fiber and we will 
show the relationship between the latter and the measured voltage V3ω. 

3. Thermal models 

3.1. 1D analytical model 

This section provides an analytical 1D radial thermal model for the 
self-heating of carbon fiber surrounded by de-ionized water. Fig. 2 
shows the geometry that has been considered. A volumic power P due to 
Joule effect is located within the carbon fiber and the surrounding 
material (water) is considered as a semi –infinite medium. In our work P 
can be assumed constant since the current is prescribed and the elec
trical resistance of the carbon fiber has a very small temperature coef
ficient. For the other cases, Ding [12] has proposed a criterion to check if 
the hypothesis P constant can be considered. 

Therefore, the corresponding radial heat equations for carbon fiber 
and deionized water can be expressed as follow: 

Nomenclature 

C Heat capacity, Jkg− 1K− 1 

Irms Intensity of the current, A 
f Frequency (f = 2πω− 1), Hz 
kr Fiber radial therm. conduct., Wm− 1K− 1 

kw Water thermal conductivity, Wm− 1K− 1 

kZ Fiber axial therm. conduct., Wm− 1K− 1 

L Fiber length, m 
R Radius of the fiber, m 
R0 Elec. resistance of the fiber, Ω 
T Temperature, ◦C 

T̃ Average transf. temperature, ◦Cm 
V3ω Voltage at 3 Ω, V 
Xup Sensitivity coefficient, ◦C 

Greek letters 
αe Temp. coeff. of the resistance R, ◦C− 1 

ω Pulsation, rad.s-1 
θ̃ Transformed temperature,◦Cm 
ρ Density, kg.m− 3 

σ Standard deviation on kr, Wm− 1K− 1  

Table 1 
Radial (kr), axial (kz) thermal conductivities and volumetric heat capacity (ρC) of various types of carbon fibers from the literature (RT = room temperature).  

Carbon Fiber Commercial Ref. kr Wm− 1K− 1 kz Wm− 1K− 1 ρC Jm− 3K− 1 Temperature K Method Ref. 

Lignin – 0.11–8 1.4–2.15 – 77 - RT FET-Raman + TET tech. [3] 
Pitch YSH-60A 12 – – RT MD simulation [2] 
Pitch – – 490 – RT T-type [4] 
PAN T650 1.5 13.7 1.97 106 RT 3ω [5] 
PAN FT300B – 10.47 1.37 106 RT 3ω [6] 
PAN FT300B  8.5  RT Hot guarded plate [7] 
Rayon TC2 – 5–12.5 – 850–1800 Periodic heating [8]  

Fig. 1. Carbon fiber radial thermal conductivity measurement principle using 
3ω method. 
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(
∂2T
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r
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)

− ρc
∂T
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= − P (1)  
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(
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− ρwcw
∂Tw

∂t
= 0 (2)  

where T and Tw are the temperature inside respectively the carbon fiber 
and the water, ρc is the volumetric heat capacity of carbon fiber, kw and 
ρwcw are the thermal conductivity and the volumetric heat capacity of 
water. 

The internal and external boundary conditions and initial conditions 
are: 
⎧
⎪⎪⎪⎪⎨
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at r = R : T = Tw and kr
∂T
∂r

⃒
⃒
⃒
⃒

R
= kw

∂Tw
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⃒
⃒
⃒
⃒

R
(perfect contact)

at r = 0 : Tfinite ; at r→∞ : Tw = 0

at t = 0 : T = Tw = 0

(3) 

To solve the system of equations (1)–(3) for a steady periodic regime, 
one have used Fourier’s transformation introducing complex number j: 
T = T̃e2ωjt for the temperature and P = P̃e2ωjt for the volumic power. 
Therefore the partial differential equations (1) and (2) are transformed 
into second order differential equations with a source term that can be 
solved easily. The corresponding solution for the average temperature 
within the carbon fiber is finally: 
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α2
1kr

[
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]

(4)  
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1+j
δ2
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kr

ωρc

√
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̅̅̅̅̅̅̅̅̅̅̅̅̅
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√

andε= krα1K0(α2R)
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+
I0(α1R)
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(5) 

In Eq. (5), the quantities I0,I1 are modified Bessel functions of first 
kind and K0,K1 modified Bessel functions of second kind. 

The relationship between the measured rms value of the voltage V3ω 

and the amplitude 
⃦
⃦
⃦T̃

⃦
⃦
⃦ of the average temperature of the fiber ̃T (Eq. (4)) 

is given by: 

V3ωrms = IrmsR0αe

⃦
⃦
⃦T̃

⃦
⃦
⃦ (6)  

where the product R0αe

⃦
⃦
⃦T̃

⃦
⃦
⃦ comes from the effect of the temperature on 

the electrical resistance RX of the carbon fiber (RX = R0(1 + αeT)). The 
temperature coefficient αe = 2.4 10− 4 K− 1 of the PAN/FT300B carbon 
fiber is more than 10 times smaller than the ones of metallic wires. 

3.2. 2D analytical model 

In fact as show on Fig. 1, heat conduction might be 2D with not only 
radial but also with axial heat transfer within the carbon fiber. Therefore 
we have also developed a 2D axisymmetric thermal model as shown on 

Fig. 3 describing axial and also radial heat transfer within the whole 
fiber surrounded by de-ionized water. In order to take into account the 
anisotropy of the fiber one have considered two thermal conductivity 
components the radial one kr and also the axial one kz. As previously a 
Joule heating with a volumic power P is within the carbon fiber and the 
deionized water is considered as a semi-infinite medium. In addition for 
the 2D model, a temperature (T = 0) is prescribed on both sides at z =
0 and z = 2L. 

The governing heat conduction equations inside the fiber and the de- 
ionized water have the following form: 

kr

(
∂2T
∂r2 +

1
r

∂T
dr

)

+ kz
∂2T
∂z2 − ρc

∂T
∂t

= − P (7)  
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)

+ kw
∂2Tw

∂z2 − ρwcw
∂Tw

∂t
= 0 (8)  

where T and TW are the temperatures inside the fiber and water 
respectively and kz is the axial thermal conductivity of the fiber. 

The internal and external boundaries conditions are: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

at r = R : T = Tw and kr
∂T
∂r

⃒
⃒
⃒
⃒

R
= kw

∂Tw

∂r

⃒
⃒
⃒
⃒

R
(perfect contact)

at r = 0 : Tfinite ; at r = ∞ : Tw = 0

at z = 0 : T = Tw = 0 ; at z = L :
∂T
∂z

=
∂Tw

∂z
= 0

(9) 

To solve this problem, one have used a double transformation of the 
temperature T (and also for Tw). First a complex Fourier transformation 
was used: T = T̃e2ωjt for the temperature and P = P̃e2ωjt for the volumic 
power. Secondly we applied the following finite sine transformation 
defined as [14]: 

θ̃=
∫ L

0
T̃ sin(βnz)dz (10) 

The appropriate transformation is of sinus type because of the type of 
boundary condition (prescribed temperature) on both sides of z-axis 
[15]. 

With these two transformations, the temperature of the fiber in the 
transform space can be expressed as: 

θ̃= a1I0(γnr) +
P̃

βnkrγ2
n

with

⎧
⎪⎪⎨

⎪⎪⎩

βn =

(

n +
1
2

)
π
L

and n = 0, 1, 2…∞

γ2
n =

kz

kr

(
α2

z + β2
n

)
with α2

z =
2ρcjω

kz

(11)  

where θ̃ is the temperature transformed twice and I0 represents a 
modified Bessel function. In Eq. (11), a1 is a term which will be 
computed further using boundary conditions. 

Then after a first integration of θ̃ over the radius r from 0 to R, one 
have used a quadrupole formulation [1] to take into account the bilayer 
shown in Fig. 3: 

Fig. 2. Geometry for the 1D thermal model with a carbon fiber surrounded by 
de-ionized water. 

Fig. 3. Geometry for the 2D thermal model with a carbon fiber surrounded by 
de-ionized water. 
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where A, B, C, D and Q̃ are defined as: 
⎧
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1
πLkrR2γ2

n

C = πR2Lkrγ2
nβn

D =
I0(γnR)γnβnR

2I1(γnR)

Q̃ = πR2LP̃

(13) 

In Eq. (12), θ̃R and Φ̃R are the temperature and heat flux located at r 
= R in the transform space and are linked by the following relationship 
since water is considered as a semi-infinite medium [14]: 

θ̃R = Z∞Φ̃R with Z∞ =
K0(γwnR)

2πRLkwγwnK1(γwnR)
(14)  

where: 
⎧
⎪⎨

⎪⎩

γ2
wn = α2

w + β2
n

α2
w =

2ρwcwjω
kw

(15) 

Finally, using the relationship for the inverse of the finite sine 
transformation which introduces the solution as a serie from n = 0 to ∞ 
and by space integration along the axis of the fiber from 0 to L, one can 
obtain the complex value of the average temperature of the fiber: 

T̃
═

=

⎛

⎝ 2
L2

∑
∞
n=0

θ̃
═

βn

⎞

⎠with θ̃=
(

A Z∞ + B
C Z∞ + D

)

Q̃ (16)  

where I0, I1 are modified Bessel functions of first kind and K0, K1 
modified Bessel functions of second kind. 

The relationship between the measured rms value of the voltage V3ω 

and the amplitude 
⃦
⃦
⃦T̃

═⃦
⃦
⃦ of the average temperature of the fiber T̃

═ 
(Eq. 

(16)) is similar to the one given by Eq. (6). 
One should not that the 2D problem represented by Eq. (12) can be 

seen (see Fig. 4) as an equivalent electrical network using the following 
two impedances defined by Ref. [14]: 

Z2 =
D − βn

C
and Z3 =

βn

C
(17)  

where in the bottom line of Eq. (12) the quantities C, D and Q̃ have been 
divided by βn since the determinant AD-BC of the matrix is not equal to 1 
(AD-BC = βn). 

4. Comparison between analytical 1D, 2D models and a 2D 
numerical model 

The values of voltage V3ω predicted with the two previous 1D and 2D 

thermal models are now compared with a 2D numerical model 
computed with finite element (COMSOL software). For this simulation, 
one have considered a modulated current of 1 mA amplitude crossing a 
carbon fiber of 1.7 mm length, 7 μm diameter and of 900 Ω electrical 
resistance with a αe = 2.4 10− 4 K− 1temperature coefficient. The thermal 
properties are axial thermal conductivity of 10.47 Wm− 1K− 1 and volu
mic heat capacity of 3.9 106 Jm− 3K− 1, both are coming from Mishra [6]. 
In addition a radial thermal conductivity of 0.8 Wm− 1K− 1 was chosen. 

Results in Fig. 5 shows a good agreement between the 2D analytical 
and 2D numerical models (less than 0.1% discrepancy). One can notice 
that the 1D analytical thermal model does not fit the 2D ones especially 
at low frequency between 1 and 100 Hz, the discrepancy is about 8% at 
1 Hz. As the 1D model was used in a previous work [5] one has tried to 
estimate the bias when estimating the radial thermal conductivity using 
only the 1D thermal model. For this purpose one have simulated data 
(V3ω vs f) using the 2D analytical model and a value of radial thermal 
conductivity was estimated using the 1D analytical model. The estima
tion of kr was performed under MATLAB software using simplex method. 
The results are presented in Fig. 6 for kr = 1 Wm− 1K− 1and kz = 10 
Wm− 1K− 1and in Table 2 with various sets of kr and kz values. 

Fig. 5 shows the agreement between calculated V3ω value using 1D 
analytical model for the estimation of kr value and simulated data V3ω 
using the 2D analytical model. The agreement between V3ω values after 
the estimation process is correct and the bias ekr1D is very large 
(50.32%). Table 2 shows more values of the bias ekr1D for various sets of 
kr and kz values. For small values of kr, the bias ekr1D is quite small which 
is probably due to high value of the radial thermal gradient compared to 
the axial one. For higher values of kr (which will be the case in our 
experimental results shown in section 7) the bias ekr1D is large. This 
suggest that despite the use of water around the fiber in order to increase 
radial heat transfer, there exists still some axial heat transfer responsible 
for the observed bias ekr1D obtained using only a 1D model. As a 
conclusion of this section, in order to estimate kr value, it is much more 
appropriate to use the 2D model (Eq. (16)) than the 1D one. 

5. Sensitivity analysis 

The measurement of the radial thermal conductivity is not easy and it 
is important to perform a sensitivity analysis which is very useful to 
choose the best operating conditions in order to perform parameter 
estimation with the lowest uncertainty. Sensitivity coefficients of the 
measured temperature T with respect to the parameter up (in our case kr 
or kz) are defined by: 

Xup = up
∂T
∂up

or X∗
up
=

up

Tmax

∂T
∂up

with up = kr , kz (18) 

The derivative ∂T/∂up was computed using the 2D analytical model 

Fig. 4. Representation of the 2D thermal model using impedances.  
Fig. 5. Voltage V3ω versus frequency for the analytical 1D and 2D models and 
comparison with a 2D numerical model computed with finite elements. 
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described previously and the geometry and thermal properties values 
considered at the beginning of previous section. 

Fig. 7 is very interesting since it compares the sensitivities to kr and 
to kz. In addition, we have added the value of the sensitivity to kz during 
axial thermal conductivity of fiber (under vaccum) as done by Mishra 
[6], the latter is indicated with the notation “with kw = 0” corresponding 
to an adiabatic condition. One can show that the use of deionized water 
around the carbon fiber greatly reduces the sensitivity to kz almost to 
0 and increases the one to kr which was expected. However, the sensi
tivity to kr still remains modest (Xkr = 0.29 ◦C) which will induce larger 
uncertainty on kr compared to the one for kz estimation under vacuum 
[6]. One can also notice that the sensitivity to kr does not depend much 
on the frequency within the 1–1000 Hz range. 

A question which arises is whether we can further increase the 
sensitivity to kr by replacing water with another fluid or material around 
the carbon fiber? Fig. 8 shows the effect of thermal conductivity of the 

surrounding material on the sensitivity coefficient of the fiber temper
ature with respect to kr. There is clearly a gain with a 6 times increase of 
the sensitivity coefficient to kr for a 10 times increase of the thermal 
conductivity kw of the surrounding material (from 0.59 to 5.9 W m− 1 

K− 1). However, practically it is difficult to find a fluid or a material with 
such properties while ensuring good thermal contact with the carbon 
fiber. By cooling the water one could obtain ice with a much higher 
thermal conductivity (2.1 Wm− 1K− 1 at 0 ◦C) than the one of water but 
the specific heat capacity would drop (from 4.22 kJkg− 1K− 1 at room 
temperature to 2.06 kJ kg− 1K− 1 at 0 ◦C) which would not bring much 
gain in terms of sensitivity to kr. Indeed the relevant quantity for 
choosing a surrounding medium providing a heat sink effect is its 
thermal effusivity which is the square root of the kwρwcw product. 
Therefore we haven’t found yet better than de-ionized water. 

6. Experimental setup, samples and uncertainty analysis 

6.1. Experimental setup 

In the 3ω method, the average temperature of the sensor or of the 
sample itself is measured thanks to the variation of its electrical resis
tance versus temperature. However this variation is small and a specific 
electronic device is required to isolate this contribution before 
enhancing the signal using a lock-in amplifier (LIA). For this purpose, 
the electronic device can be a Wheatstone bridge or a circuit with dif
ferential amplifiers. The Wheatstone bridge works fine for sensor or 
sample of low electrical resistance (less than 400Ω) not so far from the 
input impedance of LIA [6]. For higher electrical resistance the use of 
differential amplifiers is required which corresponds to our case, the 
electrical resistance of PAN type carbon fiber of 1.5 mm length being 
about 900 Ω. In our device as shown in Fig. 9, two differential amplifiers 

Fig. 6. Computation of the bias ekr1D on the estimated radial conductivity by 
using the 1D analytical model (simulated data using the 2D analytical model 
with kz = 10 Wm− 1K− 1and kr = 1 Wm− 1K− 1). 

Table 2 
Bias on the estimation of kr using the 1D analytical model, data are simulated 
using the 2D analytical model and various set of kr and kz values.  

kr Wm− 1K− 1 kz Wm− 1K− 1 kz/kr ekr1D % 

0.1 5 50 0.48 
0.2 10 50 1.93 
0.5 5 10 8.03 
1.0 10 10 50.32  

Fig. 7. Sensitivity analysis of the 3ω voltage to the radial and axial thermal 
conductivities. 

Fig. 8. Effect of the thermal conductivity kw of the surrounding material on the 
sensitivity coefficient of the fiber temperature with respect to its radial thermal 
conductivity kr. 

Fig. 9. Schematic electrical setup for 3ω voltage measurement.  
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(AD624) are used to get the difference of voltage between the resistance 
RX of the sample and the one RV of a reference resistance (adjustable 
until 5 kΩ). The adjustment of the latter is performed with a 1ω pulsation 
using the LIA (Ametek 7265) and then V3ω measurement which con
tains the temperature information is performed with a 3ω pulsation. 

The sample holder is built using two small sections of an FR4 elec
tronic circuit board covered with 15 μm of copper which are glued on a 
polycarbonate block (Fig. 10). The ends of the carbon fiber are held on 
the copper parts with silver paste insuring the required prescribed 
temperature boundary condition at z = 0 and z = 2 L (see Eq. (9)), then 
the whole is immersed in deionized water. 

The electrical resistance of the fiber is measured before and after 
been submerged to ensure there is no electrical leakage due to any 
contamination of the deionized water. Table 3 presents the geometric 
and electrical characteristics of the three carbon fibers used for per
forming the experiments. These values are presented as a range in order 
to perform the uncertainty analysis on kr estimation (see next section). 

The V3ω voltage measurements are carried out over a wide frequency 
range (1–800 Hz) with approximately 42 frequency values with more
over a few higher frequencies (around 5 kHz) to obtain the asymptotic 
values. 

6.2. Uncertainty analysis 

There are many sources of uncertainty when measuring kr. One can 
cite the quantities such as length, diameter of fibers, electric current and 
voltage as well as the thermal parameters assumed to be known kz, ρc … 
The principle of calculating the overall uncertainty on the estimated 
radial thermal conductivity kr is issued from previous reference books 
dealing with parameter estimation [16,17]. The absolute uncertainties 
1.96 σkr on the estimated kr with 95% confidence bands comes from the 
computation of the matrix of variance–covariance Sfinal at the final 
iteration as proposed by Milosevic [18] and defined by: 

Sfinal =
[
XT WX

]− 1 with W =

[

σ2
V3ω +

∑

P

(

σmP

∂V3ω

∂mP

)2
]− 1

(19)  

where X is the sensitivity coefficient matrix, W is the variance covari
ance matrix, σV3ω is the standard deviation of the measured voltage V3ω, 
σmP is the standard deviation of the known parameters mp. The values of 
the standard deviation σmp are found from the relative error emp on the 
known parameters listed in Table 4 (emp = 1.96 σmp/mp). 

Finally, the typically value of the error for the estimated value of 
radial thermal conductivity is 24%. This error is higher than the one 
obtained for the axial thermal conductivity (about 8.1% [6]) because 
heat transfer is studied along a much shorter distance which is measured 
with lower accuracy. 

7. Experimental results 

The estimation of the radial thermal conductivity was carried out 
using the 2D analytical thermal model validated previously. The 

estimation procedure has consisted in minimizing the sum of square of 
the difference between computed and measured voltage V3ω and this 
using simplex method. The value of kz and ρc for the studied fiber were 
considered known (coming from a previous work [6]). 

Fig. 11a shows a good agreement between the measured and calcu
lated values of the voltage V3ω after the estimation of the radial thermal 
conductivity kr. To improve the estimation, we have in fact considered 
from an experimental point of view the differences between measured 
voltages and their asymptotic value obtained at high frequencies around 
5 kHz, the asymptotic value should in theory be zero. Indeed, it was 
found that from one test to another this asymptotic value was not always 
equal to zero, indicating the presence of a slight electronic “offset". 

Fig. 11b shows the residuals between measured and computed V3w 
values after the estimation of kr. It appears that the maximum value of 
the residuals is about 0.06 mV for a maximum voltage of 2.3 mV which 
in relative magnitude gives residuals smaller than 2.6% which remains 
low. 

Table 5 shows the results for three different PAN/FT300B type car
bon fibers with similar geometric characteristics. The estimated values 
of the radial thermal conductivity ranges from 0.4 to 0.8 Wm− 1K− 1, they 
are more than 10 times lower than the axial value equal to 10.5 
Wm− 1K− 1 of the same batch of fiber [6], this shows the highly aniso
tropic structure of such PAN type carbon fibers. These results are in 
agreement with discussion in paper from Hind [19] where a thermal 
conductivity ratio from 5 to 10 is mentioned for PAN type carbon fibers. 

8. Effect of thermal contact resistance and of the convection in 
water 

The numerical and analytical models used above works under two 
hypotheses: 1) perfect thermal contact between carbon fiber and copper 

Fig. 10. Sample holder and zoom on the carbon fiber implementation.  

Table 3 
Characteristics of the PAN type carbon fibers FT300B used for kr measurements.  

Carbon fiber Diameter/μm Length/mm Electr. resistance R0/Ω 

Sample 1 6.39–8.52 1.68–1.71 1043.2 
Sample 2 7.66–9.51 1.73–1.74 867.6 
Sample 3 6.33–8.59 0.74 494.8  

Table 4 
Known parameters and their relative uncertainties used for uncertainty calcu
lation over kr  

Parameters mp Relative error emp/% 

Current I0 0.1 
Electrical resistivity R0 0.2 
Temp. coeff. of resistance αe 3 
Length of the carbon fiber L 9 
Radius of the carbon fiber R 13 
Axial thermal conductivity of the carbon fiber kz 8.1 
Volumic heat capacity of the carbon fiber ρc 4.9  
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blocks and 2) negligible convection losses in water. 
For the first hypothesis, one have measured the value of the thermal 

contact resistance between the copper block/carbon fiber connection in 
a previous investigation giving a value of 8.83 10− 6 m2 K W− 1 (Mishra 
et al. [6]). This value was taken into account in a numerical model with 
the aim of estimating the influence of this thermal resistance on the final 
value of the radial thermal conductivity. The induced bias on the radial 
thermal conductivity was finally about of 6.4% with is less that the 
relative uncertainty on kr measurement. 

For the second hypothesis, two studies have been carried out with 
the aim of estimating the influence of convection under steady state 
conditions and then subject to harmonic heating. 

For this purpose, we have performed finite element calculations 
using Comsol software. Two different types of simulations were carried 
out in each study, the first under the influence of (only) conduction in 
water and the second subject to the convective phenomenon in water. 
The conduction was performed using the “Heat transfer in solids” 
module of Comsol and the convection using the “Conjugate heat transfer 
fluid-solid” module which allows the interaction between the energy 
equation and the Navier-Stokes equations. The harmonic and convective 
study was performed using transient regime and very small time steps, 
each time period being discretized with 10 time steps. 

As a first step, the steady state study showed a difference in the mean 
temperature of the carbon fiber. With convection inside the water, this 
mean temperature is about 1.46% lower than the one obtained with only 
conduction (see Table 6 below). As in section 4, a bias on the V3ω voltage 
with a few percentage might induce a substantial bias in the estimated 
radial thermal conductivity. Thus we have performed the harmonic 
study which is closer to our experimental conditions for kr measurement. 
As shown in Table 6, the discrepancy between the average temperature 
of the fiber between conduction and convection in water is much smaller 
typically less than 0.23% for a frequency higher than 1 Hz. At this level 
the induced bias on the kr measurement is small. Indeed, by changing the 
average temperature of the carbon fiber by 0.23% we have obtained a kr 
variation about 4% which is smaller than the computed relative uncer
tainty of kr measurement (24% see section 6.2). In addition this 0.23% 
change of temperature which would involve a 0.23% change of the V3ω 
voltage is not detectable with the lock in amplifier as for voltage about 1 
mV, the accuracy on voltage measurement is less than 0.3% as 
mentioned in the datasheet of our lock-in Amplifier [20]). 

Also in Table 6 we can see that the convective effect leads always to 
smaller temperatures as expected. In addition, as the frequency in
creases, the bias e on average temperatures decays bringing the mean 
temperature values of the fiber subject to conduction and convection 
closer to each other. 

One have also computed the value of Rayleigh number for the steady 
state case. The Rayleigh number is less than 1 1 which is much lower 
that the threshold value of 1100 under which we can neglect convective 
effect [21] 

Conclusions 

An analytical 2D thermal model in steady periodic regime has been 
developed and validated in order to estimate the radial thermal con
ductivity of carbon fiber. It appeared that the use of a 1D thermal model 
as mentione’ in the work of Liang’s work [5] could lead to bias on kr 
value of the order of 50%. In addition, the presence of water around the 
carbon fiber has been shown to induce much higher sensitivity of the 
measured V3ω voltage with respect to the radial conductivity kr while 
decreasing the one with respect to the axial conductivity kz. 

Three different samples of PAN type carbon fibers (FT300B) with a 
diamet r between 7.4 and 8.6 μm were characterized and the estimated 
radial thermal conductivity values were found between 0.43 and 0.80 
Wm-1K-1. 

The induced bias on the radial thermal conductivity produced by the 
thermal contact resistance bewen the copper block / carbon fiber 
connection was finally about of 6.4% with is less that the relative un
certainty on kr measurement. 

Convection could generate some variations in the mean temperature 
of the carbon fiber. Under steady state convection it was found around 
1.4%, however one have performed also harmonic study which is closer 
to our experimental conditions for kr measurement. In this case, the 
discrepancy on the average temperature of the fiber between conduction 
and convection in water is much smaller typically less than 0.23% which 
would involve a 0.23% change of the V3ω voltage for a frequency higher 

Fig. 11. (a) Measured and computed V3ω voltages after the estimation of the 
radial thermal conductivity (sample#1, FT300B carbon fiber) (b) 
V3ω residuals. 

Table 5 
Measured radial thermal conductivity kr for a PAN type carbon fiber FT300B.  

Radial thermal conductivity Sample 1 Sample 2 Sample 3 

kr, Wm− 1K− 1 0.549 0.435/0.652a 0.801  

a Two measurements have been performed on the same carbon fiber. 

Table 6 
Average temperature of the carbon fiber with a) only conduction and b) with 
convection in water.  

f Hz TConvection 

K  
TConduction 
K  

e% 

Steady state 2.17023 2.20244 1.46 
1 3.73542 3.74401 0.23 
5 2.99306 2.99927 0.21 
10 2.66869 2.67273 0.15 

with e = 100 ∗
TConvection − TConduction

TConduction 
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than 1Hz and finally a small bias (4%) on the measured kr thermal 
conductivity. 

Knowing the axial and radial of thermal conductivities of anisotropic 
carbon fibers of PAN type, future work will concern the measurement of 
the thermal contact resistance (TCR) between two carbon fibers. This 
would allow to provide all small scale information in order to predict or 
calculate the effective conductivity of polymer matrix composites rein
forced with carbon fiber, but th easurement of fiber / fiber TCR is 
another challenge. 
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