A Novel Method of Local Anode Effect Prediction for Large Aluminum Reduction Cell
Hits:
Impact Factor:2.7
DOI number:10.3390/app122312403
Journal:Applied Sciences
Abstract:A method of local anode effect prediction is proposed for the problem that it is difficult to detect the local anode effect in large aluminum reduction cell in real time. Firstly, a fuzzy classification of local anode effect prediction in terms of fuzziness level is proposed considering various working conditions of anode current in the region. Secondly, a current volatility detection method based on time-sliding window density is designed from the problem of uneven current distribution in the region, and the anode currents in the region are classified and tracked for prediction according to the different current volatility. Thirdly, an improved Gated Recurrent Unit (GRU) neural network structure is proposed to improve the prediction accuracy of fluctuating currents. Finally, simulation experiments are conducted based on actual data, and compared with Long Short-Term Memory (LSTM) and Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), the proposed method has certain advantages in both prediction time, training time, and the mean absolute error (MAE) and mean square error (MSE), which verifies the effectiveness of the proposed method.
Indexed by:Journal paper
Discipline:Engineering
Document Type:J
Volume:12
Page Number:12403
Translation or Not:no
Date of Publication:2022-01-01
Included Journals:SCI
-
|
ZipCode:9afbadb1bdcd21f2605641205359fae42a33050a01aa43854cbd3c2c2fba7e51e00e98dd4ebb298a9e075bea70de2dc35b240e3c4868702506040a6d18b342786082da32963b6185d3a8a00d9746a41e2dea73822dae12c86efb51012eb15fb38a03b0c3dd242fbea002f942170f137c7639f1a296486404caf634982f5aab08
PostalAddress:a72a505bb7e3042b65b8678dc5b31910d97dee79ec6aa49d8716e2e2a447546adca487d0839b237c1510c994e743e8e46d12a5ace31ebef6c54bd2f52d15a6540fc9e44860bff8cd4fad775d77283b50931df4cf2c268f4434cc7e6c9067ae703caa1a02bc7ac52e12f287e7b01a7e7f8fdcb42774776a5f420d18eb29601dba
Email:b0b0c7d1446484762c8ae988f551c0cb138dbff673816f9f007150588d524fe0c394dc1670c37efe4f29dff2d181adfaf407d7bdc6fe4e2d9ada29e68a23feb9f5e6ccca2c5fdcca2febb8abcd4da336b9b8f9750c1ed011bf0461f7c59ea765fbf3da7be7cea5eeda113feba2e356e9b3406d998dc24b1828659a34f1c2a064
|